• Elbow = 5% of fractures
 - 0.5% Distal Humeral
• Adults - Comminution ++
 - Kids - Supracondylar/condylar minimal comminution
Distal Humerus made up of 2 columns
- Medial and lateral
- Together have two articulations
- Ulna humeral - Hinge joint
- Radio humeral - Rotational joint
- Independent but related
• Very thin sections of bone at olecranon fossa, radial fossa, coronoid fossa
 – Provide room for ROM without impingment
 – Weak area
• Alignment
 – 4-8° of valgus (carrying angle)
 – 3-8° of external rotation
 – 40° of forward flexion
• Ligaments and muscles
 - Medial and Lateral Ulnar collateral ligament
 - Flexor and extensor origins
• Peri-articular - OTA Classification
 - A - Extra Articular
 - B - Partial Articular
 - C - Total articular - No continuity shaft to articular surface
Classification – Peri-articular

- **OTA/ AO**
• Standard X-rays
• Traction X-rays
• CT Scan with Recon
• Stress Views
Treatment Options - Type A Fractures

- As in Kids - Brachial artery injury is sometimes associated with this type
- AKA transcolumnar fractures
- Also classified into high, low or oblique
Management Options – Type A Fractures

- **Closed Reduction and Casting**
 - Now recommended only for those who are medically unfit
- **Closed Reduction and Traction**
 - Neither closed technique allows for early mobilization
- **Percutaneous Pinning**
 - As in kids, crossed k-wires
 - Must be immobilized in cast for 5-6 wks
- **Open Reduction Internal Fixation**
 - The current standard of care
Management Options – Type A Freactues

• Percutaneous Pinning
 - As in kids, first obtain closed reduction
 • Traction and flexion (if extension type)
 • Traction and posterior pressure on the forearm (if flexion type)
 • Then two crossed k-wires starting on the epicondyle and crossing the fracture site
 • Under flouro
 - Ulnar nerve a risk
 - Not stable construct - needs to be in cast/splint x 5-6 wks
 - Possibility of stiff elbow
Management Options – Type A Fractures

- **Open Reduction and Internal Fixation**
 - Method of choice
 - Allows for stable fixation and thus early ROM
 - Minimizes chance of stiff elbow
 - Can start ROM as soon as day 1

- **Technique** – Same as fixation for Type C
 - Will go over this later
Treatment Options - Type B Fractures

- Milch Classification for medial or lateral column fractures
 - Type I - Lateral wall of trochlea attached to main mass of humerus
 - Type II - Lateral wall separated
- High/ Low Classification
- OTA B1.1 or .2
- OTA B2.1 or .2
Treatment Options - Type B Fractures

- Non-operative
 - Non medically fit
 - Low, undisplaced intraarticular fractures

- Operative
 - Treatment of choice
 - Muscle Pull significant force of displacement
 - Cannulated screws / Lag screws
Management Options – Type B Fractures

- Articular Fractures
 - Capitellum
 - With or without involvement of the trochlea
 - If undisplaced – closed treatment
 - If displaced
 - Open reduction and internal fixation
 - Lateral or Anterior approach and Herbert type countersunk screws
Treatment Options - Type C Fractures

• Options
 - Non-operative - Classical teaching (1960s)
 - At the time poor outcomes with ORIF
 - Traction through olecranon pin - 3 wks, then cast
 - Collar and Cuff - Bag of Bones Treatment - Maximal flexion initially, encouraging ROM of hands and fingers
 - At 6 wks begin elbow ROM
 - Operative - Current Choice
 - ORIF is now recommended because we have a better understanding of fractures, imaging and implants
 - Can achieve reasonably functional outcomes because of early motion
 - Total Elbow - A few slides from now
Treatment Options – Type C Fractures

• 90-90 plating
 - Posterior lateral plate
 - Medial plate
 • Distal end of medial plate can be bent so that it includes orthogonal screws
 • Compression screw can be used across the condyle
 - Biomechanically the strongest construct
 • Helfet and Hotchkiss

- Pelvic reconstruction plates
- Pre-contoured plates
 • Accumed - Locking
 • Zimmer - Locking
Management Options - Type C Fracture

• **Total Elbow**
• **Currently only recommended in**
 - the elderly and those with low demand
 - Those with very poor bone quality
 - Extremely comminuted fractures
• **Cannot be used as a bailout if olecranon osteotomy used**
 - Must use either triceps split or osteotomy of epicondyles
 - Generally should be done by experienced arthroplasty surgeon
Outcomes In Type C Fractures

• Outcomes proportional to energy type of fracture
• Stiffness
 – Despite ORIF and optimal early ROM still can have 20-25° flexion contracture
• Pain
 – 25% can have exertional pain
• Strength
 – 75% of normal side
Challenges
- Avoiding articular surfaces
- Avoiding impingement of fossae
- Capturing multiple small fragments
- Cancellous bone
- Achieving stable fixation to allow early ROM
- Osteoporotic bone
ORIF Distal Humerus

- Posterior Approach to the elbow
 - Position lateral, or partial lateral
 - Arm across body, or with sterile bolster
 - Tourniquet applied high
 - Incision: straight posterior, or slightly medial, curving around medial side of olecranon tip up midline of arm
• **Posterior Approach Cont’d**
 - Dissection consists of exposing the triceps fascia
 - Identifying and the ulnar nerve on medial side +/- transposition depending on #
 - To get to the joint a triceps split or an olecranon osteotomy
 - Studies show no difference in muscle strength post-op
• **Posterior Approach Cont’d**
 - Pre-drill and tap olecranon
 - Create cevron apex distal
 - Protect the articular surface by going through the last millimeter with an osteotome
 - Aim for the ‘bare patch’ at the apex of the trochlear notch
ORIF Distal Humerus

- Posterior Approach
 - Pre-drill and tap olecranon
 - Create cephalic apex distal
 - Protect the articular surface by going through the last millimeter with an osteotome
 - Aim for the 'bare patch' at the apex of the trochlear notch
• **Postero-lateral Approach**
 - Used for isolated lateral column fractures
 - Position - Supine with arm across chest
 - Incision: curved from lateral epicondylar ridge to lateral border of ulnar
 - Internervous Plane:
 Anconeus and ECU supplied via radial and PIN respectively
 - Superficial dissection: incise deep fascia in line with skin incision to find ECU and Anconeus. They share common origin
Deep dissection: pronate forearm to move PIN away. Find Supinator at the deep part of the incision and strip if off as necessary from epicondyle.