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Genomic approaches to disease association
mapping 
Genomics is transforming epidemiology, medicine, and
drug discovery,1–7 and attention is being directed towards
population-based genetic association studies for complex
phenotypes.3,8–12 For many complex conditions, the genetic
basis of susceptibility to disease, disease progression and
severity, and response to therapy has been increasingly
emphasised in medical research, with the ultimate goal of
improving prevention, diagnosis, and treatment.4,5,13,14

Completion of the human genome sequencing project
has been followed by three advances that provide novel
opportunities for understanding the pathogenesis of
common diseases:1,15 (1) compilation of extensive
catalogues of DNA sequence variants across the human
genome (polymorphic loci);15–17 (2) more rapid and cheaper
molecular genetic techniques for investigating
polymorphic sites; and (3) increasing availability of large,
population-based samples such as the European
Prospective Investigation into Cancer and Nutrition,18 the
International Study of Infarct Survival,19 and the Million
Women Study.20 Large, national cohorts (eg, the UK
Medical Research Council and Wellcome Trust Biobank21)
are attracting funding bodies in many countries. Although
the genomics revolution and the generation of high-
density single nucleotide polymorphism (SNP) maps has
benefited the investigations of mendelian (single-gene)
diseases, our discussion will be restricted to common
complex conditions such as obesity and cardiovascular
disease that are determined by multiple genetic and
environmental factors. Such diseases constitute the main
health burden in developed countries.1,4,5,22

Given the rapidly changing nature of the field of
genetic epidemiology, the large amounts of genomic data
being generated at considerable cost, as well as the
apparent and unforeseen obstacles facing progress, it is
important to consider these intiatives in the context of

expediting the discovery of complex human disease
genes. We review knowledge about the human genome
as related to SNPs and linkage disequilibrium (LD),
discuss the potential applications of this knowledge to
mapping complex disease genes, and look at the
feasibility of whole genome association using SNPs. 

Genomic information in mapping complex
disease genes 
We are at the beginning of our ability to map complex
disease genes. Sequencing of the human genome
remains the key to this enterprise, but the focus of that
project was the consensus human sequence, which by
definition cannot contain information about individual
differences of medical relevance.23 To make use of the
consensus sequence, the SNP Consortium was formed
in 1999, with other public and private projects, with the
aim of discovering common polymorphism sites in the
human genome.24 The increasingly complete catalogue of
common genetic variants that is being applied to
association studies of complex phenotypes is a direct
extension of the consortium’s work. The natural next step
to the SNP discovery phase was to genotype identified
SNPs in individuals to begin to assess their potential
usefulness for disease mapping. This work is ongoing in
the International HapMap project. The next stage will
involve applications to gene discovery. Some genes
associated with complex diseases have been discovered
by association-based genetic mapping.25,26 Genetic
association studies are discussed in detail in other papers
in this series.27,28

The association of an allele with a phenotype due to
correlation (ie, LD) between the allele and a nearby causal
variant—so-called indirect association—is the main
thrust of whole-genome association studies and large-
scale genomic projects like the International HapMap
project (discussed below). 
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Much effort and expense are being spent internationally to detect genetic polymorphisms contributing to

susceptibility to complex human disease. Concomitantly, the technology for detecting and genotyping single

nucleotide polymorphisms (SNPs) has undergone rapid development, yielding extensive catalogues of these

polymorphisms across the genome. Population-based maps of the correlations amongst SNPs (linkage

disequilibrium) are now being developed to accelerate the discovery of genes for complex human diseases. These

genomic advances coincide with an increasing recognition of the importance of very large sample sizes for studying

genetic effects. Together, these new genetic and epidemiological data hold renewed promise for the identification of

susceptibility genes for complex traits. We review the state of knowledge about the structure of the human genome as

related to SNPs and linkage disequilibrium, discuss the potential applications of this knowledge to mapping complex

disease genes, and consider the issues facing whole genome association scanning using SNPs. 
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SNPs
Because the mutation rate is low (around 10–8 per site per
generation) when set beside the most recent common
ancestor of any two people (around 104 generations),25

most SNPs are thought to arise from a single historical
mutational event. Across the human genome, there are
far more SNPs than any other types of polymorphism29—
at least 10 million SNPs with frequency greater than
1%, yielding an average spacing of one every 290 base-
pairs.30 These common SNPs are thought to account for
around 90% of human genetic variation.17,31–33

There are four important advantages of using SNPs
rather than other types of genetic polymorphism to
investigate the genetic determinants of complex
human diseases.8,34,35 First, SNPs are plentiful
throughout the genome, being found in exons, introns,
promoters, enhancers, and intergenic regions,36,37 and
some of these polymorphisms might themselves be
functional. Second, groups of adjacent SNPs might
exhibit patterns of correlations that could be used to
enhance gene mapping38 and which may highlight
recombination hot-spots.39 Third, interpopulation
differences in SNP frequencies can be used in
population-based genetic studies.40,41 Fourth, SNPs are
less mutable than other types of polymorphism,42,43 and
this greater stability could allow more consistent
estimates of gene-phenotype associations. 

The common SNPs have been subject to large
cataloguing projects funded by both government and
industry.16,17,44 These efforts have involved targeted SNP
discovery by mutation detection45 or primary rese-
quencing in candidate genes or regions.30,31 Of more
than 10 million SNPs so far identified, more than
5 million have been validated. 

Many other SNPs present in major ethnic groups are
likely to be discovered. SNP databases are constantly
being updated (panel 1).17,31 However, the data are not
infallible, as some putative polymorphisms turn out to
be sequencing errors or rare or population-specific
variants often not detected in subsequent studies.16,17

Limitations due to cost and the incomplete status of
SNP databases mean that the association analysis of
SNPs in complex disease genetics has been mostly
limited to polymorphisms within biologically plausible
candidate loci. Many investigators interested in specific
genes or pathways have independently sought to
identify sequence variants by primary resequencing in
their own study populations.31,46

SNPs are finding widespread use in fine mapping of
genetic disorders, in the delineation of genetic influences
in multifactorial diseases such as breast cancer,
cardiovascular disease, type 2 diabetes and asthma, and
as genetic markers to predict responses to drugs and
adverse drug reactions.22 There are at least six primary
areas of potential application for SNP technologies in
improving our understanding of complex disease:
(1) hypothesis-free gene discovery and mapping;

(2) association-based candidate polymorphism testing;
(3) pharmacogenetics; (4) diagnostics and risk profiling;
(5) prediction of response to non-pharmacological
environmental stimuli; and (6) homogeneity testing and
epidemiological study design.9 There are thus dual
imperatives to develop advanced technologies to detect
and genotype SNPs, and for improved statistical
approaches and study designs to enable SNP data to be
incorporated into epidemiology and clinical medicine. 

Linkage disequilibrium
Most SNPs lie outside genes and are not likely to alter
gene structure or function, so they might not be directly
associated with any change in phenotype.47 We need to
know whether the DNA sequence variant under
consideration is potentially directly functional (ie, could
lead to the observed biology) or is indirectly correlated
with another DNA sequence variant that is the actual
cause of the phenotype of interest. Since candidate genes
are usually difficult to select12 and since functional data are
rarely available for a given SNP, testing for indirect
association is the model which most attempts at gene

See http://www.ncbi.nlm.
nih.gov/ SNP/index.html
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Panel 1: Selected websites

SNP databases
� dbSNP Polymorphism Repository

[http://www.ncbi.nlm.nih.gov/SNP/]. 
� Cancer Genome Anatomy project

[http://cgap.nci.nih.gov/].
� Génome Québec

[http://www.genomequebec.com/index_e.asp]. 
� The Golden Path [http://genome.ucsc.edu].
� Human Genome Variation Database

[http://hgvbase.cgb.ki.se/]
� The Human Genome Variation Society

[http://www.genomic.unimelb.edu.au/mdi/].
� Human Gene Mutation Database

[http://archive.uwcm.ac.uk/uwcm/mg/hgmd0.html] 
� Human SNP Database [http://www-

genome.wi.mit.edu/SNP/human/index.html]. 
� The International HapMap Project

[http://www.hapmap.org/] 
� LocusLink [http://www.ncbi.nih.gov/LocusLink/]
� NHLBI Programs for Genomic Applications Resources

[http://pga.lbl.gov/PGA/PGA_inventory.html]
� OMIM: Online Mendelian Inheritance in Man

[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMI
M]

� SNP Consortium [http://snp.cshl.org/]. 
� SNP View [http://snp.gnf.org/]. 
� The Sanger Centre [http://www.sanger.ac.uk/].

Software
� An extensive list of genetic analysis software

http://linkage.rockefeller.edu/soft/list.html].
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discovery use. LD is discussed in other papers in this
series.27,28 Loci in LD are generally close together, but the
relation varies (figure 1). When a variant is first
introduced into a population by mutation, it will be
perfectly correlated with nearby variants, but over
successive generations meiotic recombinations will break
up the correlations, and LD will decay (figure 1). Indirect
association mapping relies on LD in the sense that the
functional variant need not be studied at all, so long as
one measures a variant that is in LD with it.

Many factors can influence LD, including genetic drift,
population growth, admixture, population structure,
natural selection, variable recombination and mutation
rates, and gene conversion.49,50 The International HapMap
project was started to describe disequilibrium patterns in
some ethnic groups and it should help clarify the value of
SNPs for the indirect association mapping of disease
genes25 (see below).

Haplotypes and haplotype estimation
Indirect association mapping by LD relies on gene-
phenotype associations at the level of population,51 and
requires a dense map of markers.52 It may be enhanced
by examining multiple markers simultaneously or using
haplotypes, which are linear arrangements of closely
linked alleles on the same chromosome inherited as a
unit. Haplotype analysis in the context of disease
association studies is difficult,53 but haplotypes do
contain at least as much information as the genotypes at
each component locus, so may prove essential for some
disease gene studies. 

For M biallelic markers there are 2M possible
haplotypes (though often many fewer are evident), and
because we usually do not know in advance which
haplotypes might be associated with disease, all are
tested. Testing SNPs one at a time would require M tests
so the greater information in haplotypes is offset by the
cost of testing more of them. The growing use of
phylogenetic approaches derived from population
genetics in human gene discovery investigations holds
promise in this area,54 as it helps to form natural
groupings of haplotypes.

When LD is high, the redundancy amongst markers
means that haplotypes can be used in association studies
to efficiently map common alleles that might influence
the susceptibility to common diseases, as well as for
reconstructing genomic evolution.55 When LD is low,
haplotypes will generally be useful in refining SNP-
phenotype associations only if they help delineate rare
allele frequencies or if there are significant interactions
among the SNPs in their effect on the trait. In complex
diseases, where multiple variant loci contribute to
disease susceptibility, haplotypes are therefore also
potentially important since different combinations of
particular alleles in the same gene may act as a meta-
allele or meta-SNP and have different effects on the
protein product and on transcriptional regulation.56

In population-based studies based on unrelated
individuals, the parental origin of each allele of a
genotype is not known (so-called phase unknown
status); haplotypes for double heterozygotes are
uncertain and must be estimated.57 Statistical methods
and software are available to estimate haplotypes from
phase unknown genotype data in large population-
based samples of unrelated individuals or in family
data,57–62 and new maximum-likelihood methods have
been developed to allow the testing of statistical
association between haplotypes and binary, ordinal,
and quantitative traits.63 However, the use of haplotypes
derived from phase-unknown genotype data is not
always straightforward, and the value of these
techniques for gene mapping is not yet clear.57,58,65

www.thelancet.com Vol 366   October 1, 2005  1225

0

0·1

0·2

0·3

0·4

0·5

0·6

0·7

0·8

0·9

0 50 100 150 200 250 300 350 400 450 500

Distance between markers (Kbp)

LD
 (r

2 )
t=250

t=50

t=50

0

0·1

0·2

0·3

0·4

0·5

0·6

0·7

0·8

0·9

1·0

1·0

0 0·01 0·02 0·03 0·04 0·05 0·06 0·07 0·08 0·09 0·1

Recombination fraction

LD
 (

D
)

Figure 1: Theoretical (upper) and observed (lower) patterns of LD decay 
Data from chromosome-wide study of human chromosome 22·48 Upper: hypothetical decay in LD as function of
recombination fraction between two loci. Three curves indicate different time-scales (numbers of generations) since
initial mutations that generated markers. For two markers that recombine at rate �, correlation between two markers
is reduced (by 1–�) in each generation, so at generation t, remaining disequilibrium, E(Dt)=(1–�)t. Lower: decay trends
in real data from chromosome 22. General shape of theoretical decay apparent in empirical data, but there is a vast
amount of variability so that knowing average decay gives little information about any specific pair of genetic loci.
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LD patterns across the genome 
Large sets of SNPs and improved genotyping technology
and statistical methods for haplotype estimation are
necessary for improving gene discovery via indirect
association analysis, but there is more information
available. The extreme variability in the correlation
between physical distance and LD in a given genomic
region (figure 1) means that two genetic variants that are
physically close will sometimes be completely
independent, whereas loci that are very far apart will
sometimes be highly correlated. Thus, when LD is low,
screening nearly all of the SNPs in a given region could
still miss the relevant locus. When LD is high, evidence for
association can be found for most of the loci examined,
which would reveal little about the precise localisation of
the aetiological variant. These two extremes are depicted in

figure 2, where a chromosome region in which many
markers are associated with the outcome (top left) is
contrasted with a region in which only a single marker
reveals evidence for association. The different patterns of
disease association are due to different LD patterns in the
chromosome regions.

Until recently, little was known about LD patterns in the
genome except for a few well-characterised genes and gene
families. However, studies of large genomic regions or
entire chromosomes are now adding to this knowledge
base, highlighting the importance of dense marker panels
and revealing extensive variability in LD patterns and
recombination rates.66–70 Further information is needed to
enable appropriate study design and more accurate
interpretation of association studies. The International
HapMap was initiated in recognition of this need (panel 2). 
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Figure 2: The role of LD in facilitating allelic association 
A and B: disease association profile for hypothetical disease in which aetiological locus confers OR of 3·0. Markers in A show extensive background LD, so many are
associated with trait. Markers in B show little LD, so only causal locus is associated. Distribution of LD for these two scenarios shown below to illustrate that knowing
local patterns can help to delineate expected patterns of association and design efficient novel studies. Data from chromosome 22, in which arbitrary locus was
designated disease gene in high and low regions of the chromosome.48 Decay in odds ratio computed as described.26
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Methodological and study design issues
Increasingly complete SNP databases, better genotyping,
high density LD maps, and large, population samples are
essential for complex trait association studies but do not
guarantee success. Other obstacles remain,85,86 many of
which are outside the investigator’s control. Examples,
reviewed elsewhere, include technical issues in
genotyping, limitations to our understanding of LD,49,87

and difficulties in investigating gene-phenotype associ-
ations involving multiple interacting genetic and
environmental factors.12,35,88 However, in this section we
will highlight some additional factors emerging from the
ongoing integration of the large-scale genetic and
epidemiological data.

Statistical methods
The focus on SNP genotyping has made it clear that new
statistical methods are needed for LD mapping of
complex trait genes,12,85,89,90 and has led to re-examination

of mapping methodologies and study designs.10,12,49,52,91 The
fundamental issue of how to deal with the volume of data
produced is only now being addressed; developments in
biostatistics have been lagging behind the capacity to
generate SNP genotypes.74,92 The best way to apply SNPs
and LD mapping data to the genetic epidemiology of
common diseases remains unclear. A number of
statistical methods for selecting haplotype-tagging SNPs
are available and more are in the pipeline.75,76,93 The
differences between these diverse approaches will need
to be understood to make efficient use of genome-wide
LD data. Additionally, the applicability of a tagging
approach developed in one population to other
populations has not yet been fully examined, leading in
part to the wide range of differences in the estimates of
the potential gain in genotyping efficiency resulting
from the use of htSNPs.
One practical challenge facing haplotype tagging
(panel 2) is the definition of the genomic region to be
tagged. Tagging was initially described as a means of
efficiently genotyping,72 but it was later wedded to the
notion of haplotype blocks, which are regions of very
high LD delineated by regions of low LD.74,94,95 As block
boundaries are not always consistent within or between
populations67,77,96 or between statistical definitions it is not
clear that block-tags defined in one sample will capture
the same information in another. Ultimately, the  region
definition problem may be addressed empirically by
examining multiple samples drawn from many popu-
lations, or theoretically by statistical methods that do not
depend on physical boundaries.81

Missing data, an issue for genetic analysis generally,
are a particular problem for haplotype analysis.
Sequencing or genotyping a given set of SNPs is rarely
100% complete and missing data with each additional
SNP included in a haplotypic analysis. Other branches of
statistical investigation have learned that ignoring
missing data or restricting analysis to individuals with
complete data can lead to biased or inefficient analyses,
even when data are missing completely at random.97–101

This problem worsens if data are not missing at random,
as may be the case with systematic errors in genotyping
assays. Methods for dealing with missing data have
seldom been applied to genetic epidemiology but more
needs to be known about the extent to which missing
data are a problem in genetic association analyses of
SNPs and haplotypes and about the application of
methods for dealing with missing data in such studies.

Power, p values, and multiple testing 
In complex disease genetics, both type I and type II error
needs to be reduced.8,12,102 Power for studies of allelic
association will depend primarily upon sample size, the
effect size of the susceptibility locus, the strength of LD
with a marker, and the frequencies of susceptibility and
marker alleles.26 Figure 3 illustrates sample sizes needed
to detect a true odds ratio of 1·5 with 80% power and
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Panel 2: the International HapMap project

This large project aims to construct genome-wide maps of
LD patterns in multiple populations.71 The project calls for
genotyping up to a density of more than 1 SNP per 1000 bp
in samples collected in the USA, Nigeria, China, and Japan. In
validating such a broad spectrum of SNPs and in building
these high density maps, the HapMap project aims to
facilitate genetic mapping across a broad array of complex
phenotypes, including those relevant to diagnostic and
therapeutic applications. Importantly, the raw data are being
released publicly, allowing immediate use of the emerging
maps by the scientific community. The project will also foster
development and application of different statistical methods
for LD mapping. 

The main practical objective of the HapMap project is to
identify sets of SNPs that will take advantage of the LD
patterns identified to allow more efficient genotyping.71

When LD is high, the redundancy between markers implies
that most of the information can be captured without
genotyping all markers. Non-redundant markers that capture
most or all of the LD information in a given genomic region
have been termed haplotype tagging SNPs.72,73 Defining and
genotyping a relatively small number of these SNPs could
allow unambiguous determination of the common
haplotypes in a population, and capture all or most of the LD
within that region.72,74–76,77,78,79,80 By this means, SNP-
phenotype association studies can be done relatively
efficiently, by contrast with genotyping all common variants
in a given genomic region or in the entire genome.72 Various
statistical approaches have been developed to define
haplotype-tagging SNPs,73–77,79–83 though it is not yet known
precisely how much saving they might yield: estimates for
European samples vary widely from about a tenth to a
fiftieth of the 10 million common SNPs.46,71,73,84
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type I error probability (�) of either 0·05 or 0·005. Even
for the best-case scenario, a common SNP acting in a
dominant fashion, more than 800 people are needed at
the 0·05 level, which is still in widespread use by
researchers and journal editors.

Multiple testing is an issue in many genetic association
studies of candidate loci where multiple SNPs in one
gene or multiple SNPs in several loci are tested, or
both,103 and an � on the order of 0·005 could be more
realistic, even for only a small set of genetic markers. Use
of �=0·005 or with an uncommon SNP that acts in a
recessive fashion leads to large sample sizes. This
problem will be exacerbated in studies with more SNPs,
such as whole genome association designs (and even
smaller values of �) where the numbers become higher
still. These power calculations show that the sample sizes
used in many case-control association studies of complex
phenotypes have been too small to detect even quite a
large effect of an SNP. Genetic association studies have
generally been underpowered,4,10,52,85,104 and future studies
will have to be much larger for most human diseases.
Very large cohort studies will be needed for genetic
epidemiological investigations of many common
conditions,11,21 and collaboration among research groups
is becoming increasingly important.

The testing of large numbers of SNPs for association
with one or more traits raises important statistical issues
about false-positive rates and levels of statistical
significance.52 Post-hoc corrections tend to be too
conservative, especially since many (such as a simple
Bonferroni correction105) do not take proper account of
the correlation between SNPs in LD with each other.

Haplotype-tagged SNPs are chosen to be as independent
as possible. So, use of tag SNPs requires more stringent
correction than studies of equal numbers of correlated
genomic SNPs. With correlated markers, statistical
techniques to correct for multiple comparisons are
emerging,106 but replication of genetic association
findings in independent population samples remains the
gold standard for complex disease genetics.8,107,108

Population heterogeneity 
Population heterogeneity is a serious issue for gene
discovery in any population-based study of complex
diseases.109–114 Disease prevalence often changes with
geography and ethnic origin, and allele frequencies can
vary widely throughout the world.115 Additionally, there is
likely to be a high degree of variation in LD between
populations of different origins,112,116 and between
different genomic regions,48,68,69,117,118 leading to differ-
ences in genetic-physical map correlations, estimates of
LD and haplotypes, tagging SNP selections, and other
outcomes. This heterogeneity can complicate or even
prevent gene discovery and cloud apparent evidence for
replication. 

For association studies of many complex diseases,
case-control designs have become the approach of
choice. The biggest criticism of such studies has been
the potential for undetected population stratification:
spurious association may arise when allele frequencies
vary across subpopulations (eg, people from different
ethnic groups119). This is a potential issue for both
direct candidate gene approaches and indirect
association.120 Such stratification may result from
recent admixture or from poorly matched cases and
controls. Genomic control, genotyping of random
panels of SNPs to assess population structure and
begin to correct for it,113,114,121–127 coupled with careful
population-based studies of unrelated controls should
reduce confounding by population stratification.128

Research on the performance of genomic control with
large samples has revealed that the larger the sample
size, the greater the potential bias from stratifi-
cation.113,114 We may need to type many hundreds 
or even thousands of markers to detect and control
subtle stratification in large samples.113 Fortunately,
genotyping costs are falling.113,114

Understanding how aetiological factors act at a
population level will be a critical step for the clinical
application of knowledge about the genome.4,129,130

Genetic knowledge will only become clinically useful
when it is placed back in an epidemiological and public
health context.5–7,13,131 Very large, longitudinal, well-
characterised population-based studies drawn from
multiple ethnic groups will have a vital role in the
implementation of SNP-based gene discovery and in
diagnostic tests for complex phenotypes in the outbred,
highly admixed populations that increasingly
characterise human societies today.73
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Rare alleles 
Current attention in population-based association
studies is focused almost entirely on genetic markers
and aetiological variants that are common (�1%
frequency). This is true for SNP detection studies ,24

public databases,31,67,96,132 the HapMap project,71 and
haplotype tagging, and most sample collections are
powered to detect effects only arising from common
variants. There are several reasons for this emphasis.
The most cited one relates to the common-disease,
common-variant hypothesis, which holds that genetic
influences on diseases of high population prevalence are
old, and are thus typically very common. There are
arguments and evidence for and against this hypothesis,
as well as empirical support and counterexamples.133–135

Another reason for the emphasis on common alleles is
purely practical. Common diseases are assumed to be
influenced by many genetic and environmental factors,
all with a modest effect on the trait. If the genetic
influences are rare, the sample sizes required to detect
the modest effects become impossibly large8,26,136

(figure 3). Thus, in the absence of so-called low-hanging
fruit (genes with major effects on complex phenotypes)
it is impractical to search for rare genetic effects using
the allelic association design. This practical consid-
eration explains the current focus on gene discovery
strategies aimed at common alleles and implies that real
effects associated with rare alleles will go undetected.

Allelic heterogeneity accentuates the problem of rare
alleles. With the breast and ovarian cancer loci BRCA1
and BRCA2, the phenotype results from a very large
number of different mutations in the same gene(s),137 so
that many people have extremely rare or unique
mutations. Such heterogeneity would possibly not be
detected by population-based association, no matter how
large the sample size or the number of common SNPs
genotyped (the BRCA1 and BRCA2 loci were identified
by family-based linkage138,139) Thus there are genetic
aetiologies that are not amenable to discovery by
population association analysis.88,135 As these are not
known a priori, it is important to emphasise that the vast
SNP datasets being constructed, the HapMap project,
enhanced genotyping capacity, and all the other
resources being brought to bear on this problem will not
always lead to gene discovery.

Replication
Several recent articles have addressed the features of a
good genetic association study.12,26,73,107,140 This focus on
study design stemmed from the realisation that genetic
association studies of complex phenotypes often either
fail to discover susceptibility loci or fail to replicate
studies that did.12,73,85,88,141–143 Despite the widespread use of
genetic case-control studies, their inconsistency is a
generally recognised limitation.84,88 This lack of
reproducibility is often ascribed to small samples with
inadequate statistical power, biological and phenotypic

complexity, population-specific linkage disequilibrium,
effect-size bias and population stratification.8,88,144,145

Other reasons for the non-replication of true positive
association results include inter-investigator and inter-
population heterogeneity in study design, analytical
method, phenotype definition, genetic structure,
environmental exposures, and markers genotyped. It is
now routinely argued that large sample sizes (generally,
thousands rather than hundreds), rigorous p-value
thresholds, and replication in multiple independent
datasets are necessary for reliable results.4,26,88,140,143 For
most complex human diseases, the reality of multiple
disease-predisposing genes of modest individual effect,
gene-gene interactions, gene-environment interactions,
heterogeneity of both genetic and environmental
determinants of disease and low statistical power mean
that both initial detection and replication will likely
remain difficult.12,52,85

Ironically, the advances in SNP genotyping and LD
mapping that offer promise for association studies also
highlight some of the difficulties that large SNP studies
face. Decreasing costs mean that more SNPs will be
typed, and thus more spurious results will be obtained.
This places a greater burden on establishing robustness
via replication. However, different definitions of
replication are emerging. Descriptions of so-called
confirmatory replication are often attached to findings
that appear non-confirmatory. For example, different
genetic markers are significantly associated in the
follow-up study differ from those in the original report;
or the same genetic markers are reported in both
studies, but with opposite alleles (ie, the disease allele is
the protective allele in the follow-up); or different
phenotypes as examined in the initial and follow-up
studies. The problem with these definitions is that
although they might indicate false positives they could
indeed reflect genuine replications because there are
genetic reasons for them. For the three examples given
above, allelic heterogeneity could explain the first
scenario, different population backgrounds the second
(as apparent in animal models of disease146,147), and the
third is consistent with genetic pleiotropy, where one
gene influences many phenotypes. Standardised
definitions of replication is needed because some
explanations (eg, a risk allele in one sample appearing as
protective in another sample drawn from the same
population) look biologically less plausible than other
replication scenarios. Although there is no disputing the
importance of heterogeneity within and between
samples and genes, there is a risk that heterogeneity
could be abused to rationalise negative follow-up studies
in positive terms.

In general, studies showing similar results in terms of
phenotypes tested and specific SNP associations found
offer strong evidence for association. However, those
lacking such clear overlap, even with positive association
evidence, may require validation using other strategies
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or datasets. Future studies of large numbers of SNPs will
need to approach these issues carefully lest replication
lose its status as a gold standard for genetic association.

Whole genome association 
High density SNP maps and the identification of genes
by the Human Genome Project148 have made whole
genome association analyses technically feasible for
many conditions.149 However, despite costs heading
down to US$0·01 per genotype150 (a target once regarded
as highly ambitious), testing all of the 10 million
common SNPs would cost at least US$100 000 per
individual or US$200 million for a single study of 1000
cases and controls. Exhaustive genotyping for associa-
tion is therefore currently impractical. 

What is a whole genome association study? 
Forms of whole genome association are now being
explored.151 Whole genome implies complete coverage
but not all such analyses are the same. For example,
marker sets of 100 000 or more SNPs are now
commercially available as whole genome panels. In
constructing such panels, one could select SNPs in a
variety of ways—eg, with a focus on genes only,152 via
haplotype tagging or at random throughout the genome.
None of these covers all variation in the genome, so by a
strict definition, none offers a whole genome study.
Indeed, genotyping 100 000 SNPs in many populations
would probably cover less than 50% of common genetic
variants.153 Whole genome association studies will
require qualifiers describing their aims, assumptions and
presumed coverage. The concern is not so much that
what they do find will be false but how many and of what
composition are the genetic variants that they missed.

Complete resequencing of the entire genomes of case
and control individuals would be ideal, but this
technology is not yet available or affordable. The high-
density panels being genotyped in the International
HapMap project (panel 2) and in industry70 offer the most
immediate form of whole genome coverage. Although
rare variants are under-represented, 85–90% of the
genetic variants that are common in the samples
evaluated may soon be available for disease-gene research.

Reducing the genotyping burden
There are at least two strategies for reducing the number
of SNPs that need to be genotyped,37 one based on
indirect association and haplotype-tagging SNPs across
the genome (map-based) and the other based on direct
association and the genotyping of all potentially
functional SNPs across the genome (sequence-based).22,153

The map-based approach makes no assumptions about
the genes involved or the type of the mutation, though it
does assume that disease alleles or haplotypes are
sufficiently frequent to have been captured by the
original tagging study. Estimates for the number of tag
SNPs needed to represent most common variants across

the entire human genome range from 200 000 to more
than a million.71,73,78,81,154–156 A single genome-wide study
would still cost several million US$ for 1000 cases and
controls. Moreover, the SNPs genotyped in such a study
would be highly selected in order to reflect the underlying
LD patterns in the relevant population. In this regard, the
feasibility of whole genome association scans in the map-
based model depend critically upon knowledge of
genomic LD patterns in multiple populations.78,87,

Random sets of uniformly spaced SNPs, though 
cheaper, easier to genotype and increasingly available
commercially, do not yield the same efficiency or
robustness.71 Further decreases in genotyping cost or
savings in the number of markers to genotype are needed
for well-powered association studies across the genome.

The sequence-based approach makes savings by
assuming that specific variants are more likely to
influence complex traits than others. Prioritised lists of
such variants8,22 decrease the number of SNPs to
50000–100 000 and study costs less than US$1–2 million
for 1000 cases and 1000 controls. However, despite the
availability of over 10 million SNPs in public databases,
further work may be needed to identify all SNPs at the
top of the priority list (ie, non-synonomous, non-
conservative coding changes8). In addition, many coding
changes are rarer in their allele frequencies than non-
coding changes, thus creating sample size challenges
unless the genes have large effects. 

One approach that can reduce genotyping require-
ments under both strategies is the use of generic or
universal controls—or a large set of representative
controls from which subsets are matched to individual
disease samples.128 Genotyping a genome-wide set of
markers on such a sample would allow re-use of the
genotypes across the disease samples. Genomic control
could facilitate matching and reduce potential
confounding.128 One potential role for large cohort
initiatives such as UK BioBank will be to provide such
universal controls. Another labour-saving strategy is
staged genotyping, so that not all markers are genotyped
on all individuals. By genotyping all markers on a subset
of the sample and liberally selecting the marker set to be
genotyped on the remainder of the sample, it should be
possible to retain most of the statistical power while
reducing the genotyping load.157 Savings of up to 75% of
potential genotyping reactions with minimal loss of
power have been demonstrated with genetic analysis of
type 1 diabetes samples.157

The map-based and sequence-based approaches both
hold promise for genome-wide studies. It is not clear
which will prove more fruitful, and it is certain that no
single approach will work for all situations. 

The future
Explosive growth in technical capacity and genomic
knowledge has been tempered by initial failures to find
genes for complex phenotypes using any strategy and our
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statistical methods and informatics capabilities lag far
behind our ability to produce huge amounts of genomic
data. What have we learned over the past decade of
linkage mapping and association analyses? One
important lesson is that everything in human genetics is
context specific—specific to the population, environ-
mental exposures, genomic region, and gene under
investigation. There is no one paradigm for gene
discovery and no single ideal study design or analytical
approach. Despite ex cathedra statements on optimum
study design and analytical, it is clear that flexible, mixed
approaches and hypothesis-free designs are desirable.
The genomics revolution has been accompanied by an
unfortunate tendency to hyperbole. This has led to
unrealistic expectations among clinicians and to
cynicism and pessimism within the genetics community.
For genetics researchers, one of the most important tasks
now is to not add to the hyperbole but to establish and
communicate realistic expectations.

Where does LD-based association mapping stand
today? For most complex human diseases, the reality of
multiple disease-predisposing genes of modest
individual effect, gene-gene interactions, gene-environ-
ment interactions, inter-population heterogeneity of
both genetic and environmental determinants of
disease, and low statistical power mean that both initial
detection and replication are likely to remain
difficult.12,52,85 However, our understanding of the
complexity of the task is improving and new tools and a
growing knowledge base (eg, rapid progress in SNP
detection, complete catalogues of SNPs, and the
attention being paid to methodological problems in LD
mapping and haplotypic approaches) do offer prospects
for success in gene discovery. These and other
developments, taken together with a small but growing
number of successful gene localisations for complex
phenotypes, suggest that cautious optimism about
discovery of genes underlying common human diseases
is justified. Another cause for hope is the assimilation of
genetic epidemiology into mainstream epidemiology
and public health in many academic institutions. The
involvement of epidemiologists should improve some of
the difficulties that have plagued complex disease
genetics, many of which can be blamed on poor design
and overinterpretation of marginal results. Our
understanding of complex disease pathophysiology has
already begun to enter into the realm of clinical
genetics,158 and we have every reason to anticipate that
the impact of genomics upon clinical practice and upon
our understanding of biology and epidemiology will
continue to accelerate.
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