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Introduction
The role of association studies in the detection and
characterisation of genes contributing to common,
multifactorial traits remains controversial. Theoretical
analyses often emphasise the power of this methodology1

but it has provided few novel insights so far.2 A major
source of frustration and confusion has been the fre-
quency with which initial positive findings are not con-
firmed.2–5 Part of the explanation could lie in biological
factors. Differences between studies in the frequency of
a particular susceptibility variant, genetic background, or
environmental exposures could affect the capacity to
replicate results. However, questions of study design,
implementation, and interpretation can be important
too.3,4,6,7 Our aim is to allow the reader to assess the
quality of association studies and better appreciate the
inferences that should be drawn. We also hope to
contribute to the development of standards for
association studies, designed to raise their quality and to
facilitate robust meta-analysis.8

What are we hoping for from an association
study?
The objective is deceptively simple. Is there a statistical
relation between genomic variation at one or more sites
and phenotypic variation, usually represented by the
presence or absence of a disease or by levels of a disease-
related trait?9 The archetypal case-control study
compares two groups that are expected to differ in their
prevalence of disease-susceptibility alleles. Provided the
sampling has been appropriate (ensuring that cases and
controls have similar ethnic background, for example),10

the detection of a significant difference in variant
frequency between groups (ie, a significant association)
is consistent either with the hypothesis that the variant
typed influences trait susceptibility or that a second
variant in linkage disequilibrium with the first does so. 

A key issue for understanding the limitations of many
papers reporting association data for multifactorial traits
is that small effect sizes are to be expected. The modest

extent of familial clustering of many complex traits, and
the failure, with notable exceptions, to detect large
susceptibility effects through linkage studies11 clearly
indicate that large genetic effects are unlikely. Evidence
from the few variants consistently shown to be
associated with common disease endorses this view. The
susceptibility variants identified so far are either
common, but have only modest relative risk (eg,
peroxisome proliferator activated receptor gamma
[PPARG] and type 2 diabetes12), or are uncommon but
carry substantial relative risks (eg, factor V Leiden and
thrombosis13; table 1). In either case, detection by
association is not straightforward.1 Except for HLA
effects on autoimmune disease, the only confirmed
associations due to a common variant (�10% allele
frequency) with a relative risk exceeding 2 are those
between variation in the gene encoding apolipoprotein E
(APOE) and Alzheimer’s disease,15 and between
variation in the gene encoding complement factor H and
age-related macular degeneration (table 1). 

Many association studies have had only limited power
to detect true susceptibility effects on this scale and even
less power to exclude the involvement of a gene.
Changing this dismal history is not only desirable but
also possible, with collaborative efforts on larger sample
sets, improved genotyping and analytical technologies,
and advances in bioinformatics. Also required are
attention to study design, implementation, and inter-
pretation, and a better understanding of what makes a
good association study. 

How good a candidate is the gene?
Since there are up to 30000 genes in the human
genome, and it is unlikely that more than a few hundred
make a meaningful contribution to variation in any
single phenotype, the a priori probability that any gene
selected at random will influence a given trait is very low.
Evidence from a range of sources (table 2) can be used to
identify genes (so-called candidates) with higher prior
odds for phenotypic involvement, and almost all
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Genetic association studies are central to efforts to identify and characterise genomic variants underlying

susceptibility to multifactorial disease. However, obtaining robust replication of initial association findings has

proved difficult. Much of this inconsistency can be attributed to inadequacies in study design, implementation, and

interpretation—inadequately powered sample groups are a major concern. Several additional factors affect the

quality of any given association study, with appropriate sample-recruitment strategy, logical variant selection,

minimum genotyping error, relevant data analysis, and valid interpretation all essential to generation of robust

findings. Replication has a vital role in showing that associations that are identified reflect interesting biological

processes rather than methodological quirks. For an unbiased view of the evidence for and against any particular

association, study quality, rather than significance value, needs to play the dominant part. 
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association studies have featured genes selected on these
criteria. Prior information of this kind should also
inform the interpretation of association findings. It
seems reasonable to demand a higher level of statistical
evidence for genes with very little supporting biological
information before interest is provoked or significance
attributed.1,7

However, assessing candidacy is a notoriously
imprecise art. Poor understanding of the molecular
mechanisms underlying most complex traits (itself one
of the main justifications for gene discovery efforts)
means that the prior odds associated with any given gene
can rarely be calculated precisely. Also, many of the
methods listed in table 2, especially if used in isolation,
are not very good at picking out true susceptibility
genes.33 Furthermore, detection of a true association
demands not only that the gene product be involved in
pathways relevant to the development of the trait of
interest but also that the gene contains variants capable
of influencing its regulation or function. 

How strong is the case for the genetic variants
that have been typed?
To guarantee detection of all possible disease-associated
variants at a given gene it would be necessary to
examine, in large samples, every base at which variation
might conceivably alter gene function or expression.
Only then could we be confident that an association had
not been missed just because the wrong markers had
been typed.6 This pursuit of perfection is, for the time
being at least, unrealistic: genotyping remains too
expensive to examine many hundreds of variants in
several thousand people for every gene of interest. So
choices have to be made, and the strategy used to define
the subset of variants to be typed has a substantial effect
on the power and quality of the study. Greater
understanding of genomic variation has allowed more
logical choices. Nevertheless, variant selection is always
a pragmatic compromise. 

There are two complementary approaches to the
selection of variants. Tagging exploits the extensive
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Explanation Advantages Disadvantages Examples

Biology Function of protein encoded is implicated Good when pathophysiology known Less good when primary pathophysiology Factor V Leiden in thrombophilia13

in biology of disease or trait (eg, autoimmune disease or thrombophilia) unknown (eg, hypertension or type 2 diabetes)
Pharmacology Gene encodes protein implicated in Evidence that modification of pathway by Treatment might not act on aetiological PPARG in type 2 diabetes12

mechanism of action of disease-modifying  small molecules can influence trait suggests pathway
or trait-modifying drug that genetic variation could do likewise

Animal models Identification of genes influencing related Provides clear functional links between gene  Species differences in physiology and in ApoAV and hypertriglyceridaemia30

traits in animal models offers candidates for dysfunction and whole body phenotype patterns of genetic variation
testing in man

Monogenic or Genes in which rare mutations lead to Rare monogenic disorders establish the gene Lack of an appropriate monogenic disease Monogenic diabetes and type 2 
syndromic forms monogenic or syndromal forms of disease has a critical function and indicates lack of diabetes (review31)
of disease also show common genetic variation compensation or plasticity 

that predisposes to polygenic disease
Positional  Genome-wide scans for linkage or association Genes that account for reproducible linkage Regions of interest defined by linkage remain APOE and Alzheimer’s disease15

information could indicate regions with a high probability peaks in genome scans probably represent large. Linkage studies are usually underpowered 
of containing a susceptibility gene major susceptibility genes and will not detect all susceptibility genes

Prior association Previous studies showing association with a Previous positive studies can give some of Caution is needed: initial association studies PPARG, KCNJ11, CAPN10 in type 2 
data gene or a meta-analysis of previous studies the strongest prior knowledge for generally overestimate the effect size of the diabetes12,24,32

indicate that variation in the gene probably examining a gene variant tested
has an aetiological role 

Table 2: Criteria for selection of candidate genes

Gene Polymorphism Approximate frequency of  Approximate  odds ratio for Reference
disease-associated allele disease-associated allele

Thrombophilia F5 Leiden Arg506Gln 0·03 4 13
Crohn’s disease CARD15 3 SNPs 0·06 (composite) 4·6 14
Alzheimer’s APOE e2/3/4 0·15 3·3 15,16
Osteoporotic fractures COL1A1 Sp1 restriction site 0·19 1·3 17,18
Age-related macular degeneration HF1/CFH Tyr402His 0·30 2·5 19–23
Type 2 diabetes KCNJ11 Glu23Lys 0·36 1·23 24
Type 1 diabetes CTLA4 Thr17Ala 0·36 1·27 25,26
Graves’ disease CTLA4 Thr17Ala 0·36 1·6 27
Type 1 diabetes INS 5’ variable number of  0·67 1·2 28

tandem repeats
Bladder cancer GSTM1 Null (gene deletion) 0·70 1·28 29
Type 2 diabetes PPARG Pro12Ala 0·85 1·23 12

Examples in order of frequency of disease-associated allele (in controls).

Table 1: Examples of some polymorphisms or haplotypes that have shown consistent association with complex disease 
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linkage disequilibrium in many parts of the genome. By
typing a subset of variants that captures a
disproportionate amount of the information in common
regional haplotypes, it should be possible to maintain
power while making considerable savings in
genotyping34 (see earlier paper in this series9). In its most
conservative form, tagging simply avoids redundant
typing of sets of variants that are in complete linkage
disequilibrium with each other. Strategies for more
subtle selection of tags are slowly emerging.35 Whether
such tag single nucleotide polymorphisms (SNPs) also
have intrinsic biological merit as markers for complex
trait susceptibility variants remains unresolved.36–38

Advocates of the common disease, common variant
hypothesis argue on theoretical38 and empirical2 grounds
that many of the alleles affecting susceptibility to
common complex traits will themselves be common. If
so, then the typing of regional tag-SNPs that are selected
specifically to capture such common genomic variation
should provide an efficient approach for detecting
complex trait susceptibility alleles.6,39

The second approach incorporates assessments of the
likely functional effect of variation within a gene or
region of interest. Those variants judged most likely to
influence gene expression or function (irrespective of
their correlation with local haplotype structure)40 are
then prioritised. Unfortunately, predicting the
functional credentials of most variants remains
extremely difficult. Non-synonymous coding variants—
those that alter the aminoacid sequence in the gene
product—are obvious targets, but assessment of the
potential regulatory effect of intronic variants or those
lying several kb upstream of a gene remains poor.41 One
critical issue is the need to define the extent of the
regulatory elements influencing a given gene. Reports of
association between haplotypes surrounding the beta-
cell promoter of the HNF4A gene and type 2 diabetes
highlight the difficulties.42,43 This promoter, which lies 46
kb upstream of the coding region, was identified a
decade after delineation of the coding sequence.44,45

Cross-species sequence comparisons to identify
conserved non-coding sequences that are likely to
represent regulatory elements46 and high-throughput
experimental methods for defining sites of gene
regulation47 promise to aid both variant selection and
subsequent interpretation. 

Until such methods are established, much weight will
be placed on the detailed functional assessment of those
variants for which there is some preliminary evidence
for association. It is certainly reasonable to argue that a
functional effect provides biological corroboration,
enhancing the probability that the statistical association
is genuine, but such findings need careful
interpretation. First, in-vitro functional studies have
intrinsic limitations: it can be hard to know how to
interpret results that suggest that the functional effects
of a given variant are only evident in particular cell-lines,

under particular experimental conditions, by particular
investigators. Second, allelic variation in expression is
likely to be present in most genes.48 Thus, evidence that a
particular variant affects the expression of a gene will
add little to a questionable association finding, especially
without any evidence that differential expression of the
gene can be causally related to the trait of interest.  

Concerns about SNP selection become more relevant
as researchers begin genome-wide scanning for
association.49 For a comprehensive survey of the
genome, hundreds of thousands of SNPs will need to be
typed. Studies on this scale are increasingly feasible50 but
serious questions remain over SNP selection, marker
density, and study design. One point of debate is the
merit of focusing whole genome coverage around exonic
SNPs.50 Such a strategy should capture common
variation in and around transcribed sequences well but
variants within the regulatory sequence will be poorly
represented. Until the relative importance of variation in
transcribed and regulatory sequences in multifactorial
trait susceptibility becomes clearer, a full assessment of
the costs and benefits of exon-centric scanning strategies
is not possible. Of course, with further advances in
genotyping, difficult decisions about SNP selection will
no longer have to be made. 

How appropriate are the samples typed?
As in conventional epidemiology, the prospective cohort
study is often regarded as the gold standard. Although
cohort studies can measure risk at the population level,
and therefore remain essential for genetic epidemi-
ologists, they are usually not efficient for the initial
stages of gene discovery. Unless the disease is very
common, the study samples generated will have far
fewer individuals with disease than without, and the
nested case-control samples that emerge will often be
small. Furthermore, the unselected nature of the cases
could compromise power, especially when compared
with samples that are deliberately enriched for genetic
aetiology and disease homogeneity. A meta-analysis of
the relation between variation at IRS1 (encoding insulin
receptor substrate-1, a key intermediate in insulin
signalling) and type 2 diabetes reported that the
association was restricted to people from hospital clinics
and was absent in population cohorts.51 Given these
limitations, the case-control study remains the mainstay
of genetic association studies, and the most important
issues relate to choice of the two study groups.

In many ways, selection of cases is the easier task,
because clinical presentation facilitates recruitment.
However, researchers have to make several crucial
decisions, explicitly or implicitly, that could influence
study outcome. One decision relates to characterisation
of cases: is it better to have many less well-characterised
cases, accepting that some misclassification and
heterogeneity is inevitable, or to aim for phenotypic
homogeneity at the cost of reduced sample size?
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Unfortunately, no general answer is possible: the correct
strategy depends on disease-specific and study-specific
factors, which are both known (eg, cost and specificity of
the phenotyping tools used) and unknown (the genetic
architecture of the condition). More useful might be
selection of cases that are likely to be enriched for
genetic susceptibility. There are good reasons to expect
selection based on strong family history52 or early age of
onset53 to increase the difference in frequency of
susceptibility alleles between cases and controls and, for
a given sample size, to improve power. When searching
for associations within regions known to be linked to the
disease of interest, this difference can be further
heightened by selecting on the family-specific evidence
for linkage and by use of allele-sharing information to
select family members showing maximum sharing with
other affected relatives.54 However, although careful
selection of cases (and controls) should provide a valid
test of association with improved power, reliable
estimation of population-based parameters (relative risk,
population attributable risk) is not possible with extreme
samples and will need population-based cohorts. Thus,
although there is no universally correct recipe for case
selection, the decisions taken by investigators can affect
study power, and often in unpredictable ways. This fact
could help explain some inconsistencies in outcome
between studies.51

Selection of controls has been extensively
discussed.6,7,10 Controls must be selected from the same
population as cases, or genomic control methods must
be used to correct for any latent population
stratification.9,55 Selection by phenotype or by age
remains controversial. Compared with population
controls (a sample judged to be representative of the
population from which the cases were drawn), use of
hypernormal controls (such as older people known to be
free of the disease of interest), would be expected to
improve power by increasing the difference in
susceptibility allele frequency between cases and
controls. However, this benefit is usually not
substantial,7 and can easily be outweighed by the costs of
defining a hypernormal population (the need to

phenotype people for disease status, the potential for
inadvertent selection for other phenotypes such as
survivor effects). One favoured option is the use of large
control cohorts of clear provenance, often nationally
representative. One such example is the UK 1958 birth
cohort, composed of individuals born in a single week
during March 1958, for which extensive longitudinal
phenotype data are available. Such cohorts can provide
controls for studies in a wide range of diseases, though
survivor bias becomes a concern where the mean age of
cases differs appreciably from that of the control cohort.
There are important benefits associated with building up
a large body of genotype, phenotype, and quality-control
data for a single control cohort. A later paper in this
series considers family-based association resources as an
alternative source of controls.56

Is the study size large enough?
The key determinant of quality in an association study
is sample size.3 With the remote chance of finding
common genes with large effects, studies must be
powered to detect variants that are common—but have
low relative risk—or rarer—but with higher relative
risk—which means samples sizes of thousands
(table 3). Rare variants with low relative risks are largely
beyond the reach of genetic epidemiology because of
the massive sample size that would be needed.57 These
calculations assume that the susceptibility variant itself
(or a marker in complete linkage disequilibrium) has
been typed, which is a best-case scenario. The apparent
success in identifying interesting associations with
studies much smaller than would be implied by table 3
might suggest that these calculations are too
pessimistic. However, small initial studies rarely find
the correct result,3 and even when they do are likely to
overestimate the true effect size.2,58

What are the practical implications of these sobering
calculations? It is hard to make any case for doing even
preliminary studies on small samples. If such an
underpowered study generates positive findings, those
will need to be replicated in a second, ideally larger,
sample. The need for large studies12 is fuelling the
emphasis on national and international collaborations.
Ideally, to avoid concerns that investigators have
rushed to press once promising results have been
identified, groups with access to multiple cohorts
should type and report on all available samples when
publishing positive results. However, large sample size
alone is no guarantee of validity. Increasing size
reduces sampling error but carries an increased danger
of false positives as hypothesis testing becomes highly
sensitive to the consequences of small bias effects due,
for example, to population stratification.59

How good is the genotyping?
Most association studies assume implicitly that the
genotypes are accurate. However, even with the best
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Frequency of susceptibility allele in controls

� (allelic odds ratio) 1% 5% 10% 20% 30% 40%

1·1 221 927 46 434 24 626 13 987 10 759 9505
1·2 58 177 12 217 6509 3730 2896 2581
1·3 27 055 5702 3051 1763 1380 1240
1·5 10 604 2249 1213 712 566 516
2·0 3193 687 377 229 188 177
4·0 598 134 78 52 46 47

Calculations assume multiplicative effect on disease risk (ie, homozygous susceptibility genotype has penetrance that exceeds
that of heterozygote by factor �, the genotype relative risk, and that of wild-type homozygote by �2). Under such model, each
allele has independent effects on disease risk, and allelic odds ratio is also equal to �. Sample sizes presented are total number of
cases needed in case control study where controls are present in equal numbers. These sample size derivations assume best-
case scenario in which susceptibility variant itself (or a perfect proxy) has been typed.

Table 3: Approximate sample sizes necessary to detect significant association (power=90%, two-sided
�=0·001) by effect size and allele frequency for predisposing allele
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methods, some assays will be unreliable; and the
accuracy of earlier genotyping methods (on which
much of the current published work is based) will have
been even worse. Historically, few journals have
required authors to report the steps taken to limit and
assess genotyping error rates or the performance
characteristics of their assays (by contrast with data
routinely demanded for biochemical assays). Authors
rarely admit to residual errors in their data, so readers
have little information on which to assess the effect of
genotyping error. Even well-regarded laboratories that
use powerful new technologies assessed under ideal
conditions report error rates close to 1% (and SNP-
specific error rates up to 3%),60 so error rates of a few
percent are not atypical.61

Most interest has focused on the extent to which
random genotyping error reduces the power to detect
true case-control differences.62,63 For example, each 1%
rise in genotyping error might require sample size to
increase by 2–8% to maintain constant type I and
type II error rates.63 Random error rates of a few
percent therefore have an appreciable, though not
calamitous, effect on power. Of greater concern are
situations in which systematic genotyping error
increases the danger of a wrongly attributed
association. In view of the low prior probability of
association expected of most variants, and the effect of
publication and other biases that favour positive
findings,64 studies affected by genotyping error of this
type are almost certainly disproportionately
represented in the published work. Some study
designs, such as family-based association tests with
parent-offspring triads, are inherently prone to bias
away from the null hypothesis, whether the errors are
detected (and the relevant genotypes, individuals or
families removed from analysis) or not.65–67 In case-
control studies, batch-related differences in genotyping
performance can be a problem. Many laboratories
store, and subsequently genotype, different sample sets
(eg, cases and controls) on separate plates, so any
variation between batches in genotyping accuracy or
tendency to preferentially reject particular genotypes
(usually heterozygotes) as assay performance falls will
translate into between-group differences in genotype
distribution. The consequences can be serious.68

Reducing the effect of genotyping error requires
more accurate genotyping platforms. Such methods are
now becoming available,69 but not all researchers yet
have access. Also, genotyping error needs to be taken
more seriously by monitoring of assay performance
(panel) and reducing sources of error and bias. Even
with the best methods, some assays will be
surreptitiously inaccurate.70 Information about
genotyping performance should be published for any
association study,8 providing journals (and their
reviewers and readers) with the information necessary
for critical appraisal, and facilitating meta-analyses

(which should incorporate some understanding of
error estimates). 

How appropriate is the analysis?
All types of association analysis contain traps for the
unwary. Ready access to so many analytical programs
can easily lead to inappropriate use if the underlying
assumptions are not clearly stated or appreciated.
Haplotype reconstruction provides a good example.
There are many ways of inferring haplotypes from
unphased genotype data (as obtained in a sample of
unrelated individuals).71–75 However, the conceptual and
computational differences between these methods
translate into substantial differences in performance
and, sometimes, in outcome.73,74 Similarly, when
inferring haplotypes within pedigrees, substantial
errors can arise with methods that inappropriately
assume that the typed markers are in linkage
equilibrium.76

The inexperienced (or even experienced) reader might
find it almost impossible to establish whether
appropriate methods have been used, and the extent to
which the results are robust. One recommendation is to
urge authors to make their raw genotype data freely
available77 but doing so could raise confidentiality issues.
The best guarantor of probity is likely to remain a
significant input from experts in statistical genetics
during study design, data analysis, and peer-review.
Additional reassurance comes when a finding remains
consistent when several complementary methods are
used.

How appropriate is the interpretation?
The perceived unreliability of association studies has
generated much discussion about the level of evidence
needed before an association can be regarded as proven.
The emphasis has generally been on the need for greater
stringency.1,7 If there are around 106 variants within the
genome that can, in principle, affect any given human
trait, an appropriate threshold might be a p value of
5�10–8 (that is the standard 0·05 corrected for 106 tests).1

Arguments from a Bayesian perspective suggest that
5�10–5 should be sufficient to constrain the false
discovery rate.7
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Susceptibility allele frequency in controls

1% 5% 10% 20% 30% 40%

�

0·05 13 599 2866 1533 886 694 623
0·01 19 258 4058 2171 1255 982 883
0·001 27 055 5702 3051 1763 1380 1240
5�10–5 36 869 7770 4157 2403 1881 1690
5�10–8 58 678 12 366 6617 3825 2994 2690

Numbers indicate sample size needed to detect significant association (power=90%) for different values of �, assuming allelic
odds ratio of 1·3, given differing allele frequencies for predisposing allele or haplotype. Assumptions are same as for table 3.

Table 4: Effect of differing statistical significance levels on sample size 
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As with linkage studies,78 such thresholds provide useful
benchmarks, whether for a single study or a meta-
analysis. However, a distinction needs to be made
between thresholds and standards for proof beyond
reasonable doubt (which should clearly tend towards the
stringent) and those for publication (just that the study has
been designed and done well). To limit publication to
studies that prove association (or that achieve the difficult
task of showing conclusively that variation within a gene
does not make a material contribution) would paralyse
research. Although the increases in sample size necessary
to satisfy more stringent criteria are surprisingly modest
(table 4), they can still exceed the scope of many current
collections. Moreover, any policy insisting on such
stringent criteria for publication would further complicate
the task of obtaining an unbiased overview of all the data,
positive or negative. Many good (largely negative,
presumably) studies would not be disseminated, leaving
the published work even more prone to bias. 

The headline p value of an association study has little to
do with experimental quality. Well run studies with large,
appropriate samples, robust low-error genotyping, and
clear primary hypotheses will advance knowledge even if

none of the association tests reaches significance at the
threshold chosen. By contrast, few associations first
reported from small sample sizes prove reliable in larger
datasets.3,4 Studies of the role of the insertion/deletion
variant in the gene encoding angiotensin-converting-
enzyme  in myocardial infarction79 and of the Pro12Ala
SNP in PPARG in type 2 diabetes12 illustrate this point.
Larger studies of the angiotensin-converting-enzyme
insertion/deletion variant made clear that small case-
control samples had overestimated the true effect,
probably as a result of publication bias.79 In the other
example, many of the early case-control studies were too
small to provide any useful estimate of the true effect
size.12

However, experimental quality cannot be the sole
consideration for publication. Journals have to take
account of the scientific interest of the findings; and, since
only a few variants are likely to show association to any
given phenotype, it is legitimate to regard positive findings
as having intrinsically greater importance. The solution to
this problem has to be rigorous criteria for study quality
along with acceptable alternative mechanisms for the
deposition and dissemination of all good-quality
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Panel: Detection and reduction of genotyping error in association studies

Ways of detecting error
� Duplicate genotype assignment: discordance rate between two operators scoring same genotypes 
� Duplicate genotyping on same assay: discrepancy rate when a proportion (more than 10%) of samples genotyped again with

same method 
� Duplicate genotyping on another assay: discrepancy rate when a proportion (more than 10%) of samples genotyped again with a

different method 
� Blank control wells: is there contamination of the PCR reagents? Is the plate oriented correctly?
� Expected allele frequencies: are allele (or haplotype) frequencies in line with those expected from previous data from similar   

ethnic groups?
� Hardy-Weinberg equilibrium: are genotype frequencies consistent with Hardy-Weinberg equilibrium? (Modest departures,

especially in case samples, could be evidence of association, but see also an earlier paper in  this series9) 
� Between-run consistency: are there outlier batches with extreme allele or haplotype distributions that need to be targeted for

repeat?
� Mendelian consistency: where related individuals have been typed, are genotypes consistent with mendelian expectation? (Note

that in simple family structures typed for biallelic markers, not all genotyping errors will generate mendelian inconsistency) 
� Assay performance: where the method provides these, are quality scores for individual genotypes and/or batches satisfactory?  
� Linkage disequilibrium relations and haplotype structure: where several adjacent SNPs have been typed in a region of strong

linkage disequilibrium, do haplotype relations suggest any fluctuations in genotyping performance? Appearance of haplotypes
that have never been identified before can be a very sensitive measure of error 

Ways of minimising error
� Assay design: robust assay design incorporating, where possible, quality checks (eg, obligate restriction sites in a PCR-RFLP

assay). Confirm that assay detects all genotypes accurately by comparison with reference samples 
� Monitor assay QC on assay-specific basis: derive and monitor quality control metrics (above) for each assay 
� Complete genotyping: batch-related biases are most likely when genotyping call rates are low, so beware of any assay with poor

call rate, or appreciable difference in call rate between cases and controls
� Mix sample sets within batches: ensure that cases and controls are mixed on the same plate (eg, by intercalating 96-well plates

onto a single 384-well plate)
� If in doubt, retype: no single measure will detect all available errors and correcting all detectable errors will not reduce the error

rate to zero. If the quality control metrics indicate assay failure, redesign the assay and retype
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association data. In the meantime, peer-review needs to
weigh study quality and the apparent biological interest of
the headline findings more equitably. 

A related issue is the need for more complete statements
of prior hypotheses and the range of analyses undertaken.
Too often, in the effort to produce at least one p value that
reaches nominal significance, exploratory analyses arising
from post-hoc subdivision and stratification of the data are
presented as major findings. One aspect of such multiple
testing is easy to solve—by reporting the number of
variants typed80 and adjusting for this by standard
methods based on the Bonferroni correction or
alternatives such as the false discovery rate.81 These
adjustments can readily take account of correlations
between the typed markers caused by linkage
disequilibrium.82 Allowing for the proliferation of analyses
that might be done at each locus is not so easy. For
example, association could be sought at the level of the
allele or the genotype: if the latter, several genetic models
(eg, dominant, recessive) can be tested.83 If several
markers have been typed, analyses of haplotype or
diplotype frequency become possible.84 Analyses might
account for the effects of stratification by, or adjustment
for, factors such as sex or disease subtype or age;
additional phenotypes (age at disease onset, or another
phenotype related to disease) could be included as
outcome variables. Evidence of interaction effects (gene-
gene or gene-environment) might be sought.85 Where
parent-offspring triads are typed, it becomes possible to
test for parent-of-origin and a variety of epigenetic effects.86

Any of these analytical manoeuvres might be entirely
justified in any given study on the basis of prior biological
hypotheses or the desire to replicate specific findings
arising from previous studies. However, when there is no
such justification, such repeated analyses will inflate the
type 1 error of the study if no correction is made. In
practice, the high degree of correlation between these
analyses can make determination of the extent of any
correction extremely difficult. 

The challenge is to avoid making false attribution of
associations based on post-hoc analyses without ruining
the capacity to undertake potentially informative data
exploration in what might be expensively acquired
samples of richly-characterised individuals. Part of the
answer must be a clearer statement of prior hypotheses
(including, potentially, some form of prestudy registration
of intent), and a more complete exposition of all the
different analyses undertaken. Most importantly, showing
that hypotheses generated from post-hoc analyses in one
sample can be confirmed in directed analyses in others is
essential for establishing their credibility.

The future
It is time for a mature and balanced view of the merits of
association studies. Individual association studies can be
viewed as stages on a journey that starts with ignorance
and (hopefully) ends with a clear and robust assessment

of whether or not variation at a given locus contributes to
disease susceptibility. Very rarely will conclusive evidence
come from a single study. As Page and colleagues77 point
out, the major purpose of replication in association
studies is not to improve the statistical significance of the
findings. Replication studies provide insurance against
errors and biases that can unavoidably afflict any
individual study, and amplify confidence that any
associations uncovered reflect processes that are
biologically interesting (ie, a variant that truly influences
disease susceptibility), rather than methodological
inadequacies (inappropriate control groups, genotyping
error, investigator biases, over-elaborate data explo-
ration).77,87

The theoretical promise of association methodology in
the analysis of multifactorial traits remains largely
unproven. However, armed with burgeoning knowledge
of the human genome, the availability of larger sample
sets, and the increasing ability to type those samples
rapidly and cheaply, the framework for progress is in
place. Improved adherence to principles of good study
design will help to ensure that this new capacity
contributes to our understanding of the cause of
common disease.
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