Establishing a Contextually Appropriate Laparoscopic Program in Resource Restricted Environments: Experience in Botswana

Alemayehu G. Bedada, Marvin Hsiao, Balisi Bakanisi, Mpapho Motsumi, Georges Azzie

Princess Marina Hospital, Gaborone, Botswana, and
Division of General and Thoracic Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
Outline

• Background
• Methods: description & assessment
• Results
• Discussion
 • Metrics of success: Patient outcomes, Technical Independence and Program Sustainability
 • Major challenges encountered
 • Keys to success
• Questions, comments, suggestions
Background

History of Minimal Access Surgery (MAS):

2004: -Equipment purchased for both tertiary care hospitals
 -Essentially unused in the capital, Gaborone, after trained surgeon left

2005: -Senior expatriate colleague approached to assist
Background

• Formal program

 • Yearly workshops: RSA & Canada
 ➢ Cognitive & Psychomotor
 ➢ Nurses & technicians involved
 • FLS (2007)
 • Telesimulation (2009)
Background

• Informal program
 • On the ground: 3/12 & Phone and internet: 9/12
 • Karl-Storz
 • “Teaching the teachers”
 • “Mentor – mentee”
 • Part of a larger program
Methods

• Program Assessment
 • Ethics committee approval: MOH, Botswana.
 • Retrospective study: 2004 – 2012
 • Pt demographics, Procedure types, Primary surgeon & assistant, Post-op stay, Post-op complications

• Technical independence:
 ▪ Annual proportion of lap chole completed independently

• Program Sustainability:
 ▪ Annual number of lap cholecystectomies
Results

• Results

• 384 cholecystectomies (288 lap vs 96 open)
 • 270/288 operations by 12 local surgeons – all part of MAS training,
 • 18/288 by surgeons with laparoscopic experience from elsewhere.

• Most patients were women (91.5%)
• Median age 41
• 15/288 converted (5.2%)
• Median post-op stay: Lap vs Open = 1 day vs 7 days
Results: complications

• Open group
 – Death: 2/96 (2.1%) - 1 COPD & Duodenal leak
 – Wound dehiscence: 1/96 (1.04%)
 – Post op pancreatitis: 1/96 & CBD retained stone 1/96 (1.04%)
 No data

• Lap group
 – Death: 1/288 (0.3%) - MI
 – CBD injury 1/288: 0.3% noticed after converted
 – Intra-abdominal collection: 1/288
Median post-op stay: lap/open/converted
Median post-op stay: laparoscopic
Annual number of lap/open cases

![Graph showing the annual number of laparoscopic and open surgery cases from 2004 to 2012. The graph indicates a peak in 2009 for both laparoscopic and open cases, with a decline in subsequent years.](image-url)
Proportion of laparoscopic cases performed without expatriate surgeons
Discussion

• Question : 2005
• Answer: Continue with well-established open tech
• PMH & MOH: Rejected the answer
• How best to develop a program?
 – Target: Lap chole
 – Local surgeons: known clinical significance, safe, effective
 – External partners: significant expertise in the field
Discussion

- Patient outcomes & Complications
 - CR: 5.2%, Low Cx & Morbi, Short HS,

- Technical independence
 - ↑ Lap chole in the absence of expat surgeons

- Program sustainability
 - ↑ Lap Chole and ↓ Open chole

- Budget: MOH
Discussion

– Major Challenges Encountered

• New procedure
 – Time, Availability of requisite equipment & staff

• Availability of equipment and operation time
 – Competition of two surgical services

• Difference between what local stakeholders hoped to learn and what outside stakeholders wanted them to learn
Discussion

• **Keys to Success**

 • Dedication & hard work of all stakeholders

 • Trusting relationship

 • Annual workshops, FLS course with follow up telesimulation & opportunities for upskilling abroad

 • Ability to work within local budgetary framework was crucial
Thanks
Questions? Comments? Suggestions?
Results

<table>
<thead>
<tr>
<th></th>
<th>Laparoscopic</th>
<th>Open</th>
<th>Laparoscopic</th>
<th>Open</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 288)</td>
<td>(n = 96)</td>
<td>(n = 288)</td>
<td>(n = 96)</td>
</tr>
<tr>
<td>Age, median (IQR)*</td>
<td>41 (31–50)</td>
<td>45 (34–57)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female sex, n (%)*</td>
<td>250 (93)</td>
<td>71 (87)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative ultrasound</td>
<td>235 (82)</td>
<td>93 (97)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study completed, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative ultrasound findings, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholelithiasis</td>
<td>235 (100)</td>
<td>72 (77)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choledocholithiasis</td>
<td>0 (0)</td>
<td>14 (15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholecystitis</td>
<td>0 (0)</td>
<td>4 (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others (gallbladder tumor, cyst, gallstone pancreatitis)</td>
<td>0 (0)</td>
<td>3 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operative time, median (IQR),* min</td>
<td>73 (55–102)</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conversion to open, n (%)</td>
<td>15 (5)</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postoperative days of hospitalization, median (IQR)*</td>
<td></td>
<td></td>
<td>7 (6–11)</td>
<td></td>
</tr>
<tr>
<td>Postoperative complications, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common bile duct injury</td>
<td>1 (0.3)</td>
<td>0 (0)</td>
<td>1 (0.3)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Death</td>
<td>1 (0.3)</td>
<td>2 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intra-abdominal collection</td>
<td>1 (0.3)</td>
<td>0 (0)</td>
<td>1 (0.3)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Wound dehiscence</td>
<td>0 (0)</td>
<td>1 (1)</td>
<td></td>
<td>1 (1)</td>
</tr>
<tr>
<td>Retained common bile duct stone</td>
<td>0 (0)</td>
<td>1 (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postoperative pancreatitis</td>
<td>0 (0)</td>
<td>1 (1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>