Compartment Syndrome

Recognition and Care

Jeffrey Kwee, PGY-2
August 16, 2005
Compartment Syndrome

- Definition
- Etiology
- Pathophysiology
- Recognition
- Diagnosis
- Treatment
Compartment Syndrome

♦ Definition
 – An area of the body where the interstitial pressure exceeds the capillary perfusion pressure

♦ Etiology
 – Increase in mass in a fixed volume compartment
 • Edema, venous obstruction due to fracture, burns, inflammation, tight surgical closure, fluid infiltration, reperfusion after temporary ischemia, snake envenomation, electrical burns
 – Extrinsic pressure
 • Circumferential burns, tight casting
 • Crush syndrome (similar but different)
Pathophysiology

- Micro-vascular collapse at the level of the venous capillaries initially
- Normal interstitial pressures around 4 mmHg
- Normal capillary perfusion pressures is around 30mm Hg
- As the interstitial pressure exceeds capillary pressure you get shunting within the compartment
- Ischemia of the muscle
 - Leading to inflammation and leakage of fluid
- Poor drainage as venous pressure is exceeded
- More edema, extravasization leading to increased pressures
- ‘vicious circle’
Vicious Cycle

- Increased Pressure
- Venous obstruction
- Leaky Vessels
- Shunting
- Ischemia
- Necrosis
- Edema
Compartment Syndrome

❖ The result
 – If left unchecked for more than just a few hours, irreversible damage will occur
 – Massive tissue necrosis, usually muscle, nerves in that area
 – If in a fascial compartment, nerves running through are affected
 – If large vessel arterial compromise – loss of distal circulation – loss of limb
Compartment Syndrome

 Recognition
 - Easy in an awake patient, hard if intubated
 • Pain out of proportion to findings
 • Pain with passive stretch
 • Pain with palpation along compartment away from fracture
 • Loss of vibration sense
 • Rigid, woody compartment
 • Blisters
 • Pallor – Late
 • Paresthesias – Reliable but late sign
 - Must be specific to nerve in compartment
 • Paralysis – Very late sign
 • Pulselessness – Very late and ominous sign
Compartment Syndrome

- Unresponsive patients, burns, intubated
 - Good history and suspicion
 - Exam – examine limbs, palpate, look for circumferential burns
 - Compartment monitoring
 - Stryker Needle
 - Whiteside Technique and variants
 - Art line transducer & 16g
Compartment Syndrome

♦ Numbers
 – Normal Tissue 4-10mm Hg
 – Criteria for Compartment Syndrome
 • Absolute pressure >32mm Hg
 • Diastolic BP – Compartment BP < 30 mm Hg
 – Not absolute, lots of controversy
 – Note: Zone of peak pressure must be measured
 • Must be in correct compartment
 • Must be near fracture
Treatment

♦ Elevate to heart level
♦ Loosen bandages (30-50% reduction in pressure)
 – Loosen Casts, cut casts AND cut webril
♦ Surgical intervention
 – For burns this means escharotomy
 – For everything else including burns with deep injury fasciotomy
Escharotomy

- Limbs – Medial and lateral incisions
 - Crossing joints
 - Extensive release necessary
 - Caution for subcutaneous structures
- Chest – for ventilations as well
 - Anterior axillary line +/- Chevron
Escharotomy

- Scalpel or Electrocautery
- Local with epi - hemostasis
- Through eschar and dermis to expose fat
- Be generous - must be large enough not to have any residual pressure
- Dress as any open wound, but very light circumferential dressings
Escharotomy
Fasciotomy

- Compartment syndrome is documented to occur in almost any muscular area
 - Anterior lower leg, forearm, most common. Hand, foot, upper arm, thigh, scapula, gluteal region rare

- Principles
 - Release ALL compartments in a limb
 - Leave all layers open, or loose approximation of skin
 - Be extensive
 - Stabilize rigidly fractures underneath
 - Debride obviously necrotic tissue
 - Second look in 48h for more necrotic tissue
Forearm

- Three Compartments – Superficial Flexor, Deep Flexor and Extensor
- Need two incisions volar and dorsal
 - Volar: Henry’s vs Ulnar approach equally effective
 - Dorsal: Between Extensor Carpi Radialis Brevis and Extensor Digitorum Superficialis
Henry’s Approach

- Skin incision medial to biceps tendon proximal to elbow, crossing at an angle
- Extend gently laterally to medial border of brachioradialis, then cross wrist at an angle
Henry’s Approach

Figure 4-11 Superficial layer of the forearm muscles and vessels.
Henry’s Approach

- Incise superficial fascia
- Inter-nervous plane between Radial and Median – Brachioradials (laterally) and Flexor Carpi Radialis (medially)
 - Take radial nerve with brachioradials
 - Take radial artery with FCR
Figure 4-6 Deep to the brachioradialis and the flexor carpi radialis are the supinator muscle, the pronator teres, the flexor digitorum superficialis, and, most distally, the pronator quadrants.
Henry’s Approach

♦ Expose muscle bellies of:
 – Flexor Digitorum Superficialis
 – Flexor Digitorum Profundus
 – Flexor Policis Longus
 – Pronator Teres
 – Pronator Quadratus

♦ And incise their fascia
Dorsal Approach

- Pronate the forearm
- Incision from lateral epicondyle to midline wrist
Dorsal Approach

- Inter-nervous plane between Extensor Carpi Radialis Brevis and Extensor Digitorum Communis – Incise fascia
Lower Leg

♦ Four Compartments
 – Lateral
 – Anterior
 – Superficial Posterior
 – Deep Posterior

♦ Single or Double incision Technique
Lower Leg Fasciotomy

- Two Incision Technique
Lower Leg Fasciotomy

◆ Single Incision Technique