Pediatric Tubes and Lines

Pediatric ER Half-day Rounds
October 12, 2011
Dr. Karen Bailey
Objectives

- to identify various enteral and vascular access lines
 - what do they look like?
 - indications & contraindications
 - proper placement
 - complications
Feeding tubes:

• Indications?
• Types?
• Method of insertion?
• Complications?
Salem Sump

Naso-Gastric Tube

Pigtail
Enteral access: Surgical

- types of G-tubes
 - Percutaneous endoscopic gastrostomy (PEG)
 - Mic-Key (button)
 - pezzer / malecot
 - Foley
 - GJ-tube
 - J-tube
 - Cecostomy tube
Enteral access: Surgical

- Methods of insertion
 - Percutaneous Endoscopic
 - (PEG/PEJ/PEGJ)
 - Open
 - Laparoscopic/assisted
 - Radiologic
PEG
PEG
PEG
PEG
PEG
PEG

PEG tube

crossbar
Enteral access: Mic-Keys and Buttons

- skin level device more attractive
- requires mature gastro-cutaneous or jejuno-cutaneous fistula
- 3 months after PEG or jejunostomy
Mic-Key
Complications

- At the time of insertion:
 - Endoscopic, radiologic –
 - Infection

- Longterm:
 - Blockage
 - Granulation tissue
Complications - 70% complication rate

- 88% of these minor (wound infection, stomal leak) in first 3 months
- wound infection decreased with pre-op dose of cefazolin
- case reports of necrotizing fasciitis and colocutaneous fistulas
- pneumoperitoneum and peritonitis
- early dislodgement
crossbar

PEG tube

cellulitis
• What do I do if it falls out??

• Ok, I’ve replaced it, but the child returned vomiting, now what?

• Now she doesn’t need it anymore, how do you close the hole?
Issues for discussion

- Replacement of G-tubes that ‘fall out’
 - By parents – foley / Mickey
 - By residents in ER - foley
 - By Lida in Clinic - Mickey
- When to do a contrast study?
- What to teach the parents?
- Ongoing costs of Mickeys?
- Alternative tubes?
- Other?
Enteral access: GJ or J-tube

❤ Advantages
❤ Beneficial for patients with
❤ tracheal aspiration
❤ reflux esophagitis
❤ gastroparesis
❤ stomach resection

🚫 Disadvantages
🚫 ? elemental diets
🚫 tube obstruction
🚫 diarrhea
🚫 volvulus
🚫 requires pump for slow feeds
Transgastric jejunal tube passed into jejunum
Central lines

- Indications?
- Types?
- Method of insertion?
- Complications?
Central Venous Access

IV Nurse or Radiology
- PICC - peripherally inserted central catheters
- temporary central venous line

Surgical
- Hickmann
- Broviac
- Port-o-cath
PICC

- **Peripherally Inserted Central Catheter**
- made of radiopaque polymeric silicone (Silastic) or polyurethane
- long term, long IV access device
- inserted in peripheral vein (basilic or cephalic veins) and advanced to distal third of SVC
- **Why SVC?** Allows catheter to float freely in lumen to decrease risk of thrombus and infection
PICC

- Advantages
 - can be inserted by IV nurse
 - do not require surgical insertion
 - increased caloric allowance (compared to PIV)
 - last up to 2-3 years
 - 7.9-25.4 days in neonates
 - cheap!!! 35-100$
PICC

Complications

- infection (0.8-12.5%)
- phlebitis (hypertonic or corrosive fluids)
- thrombus (3.9-29%)
- blockage
- pleural or pericardial effusions,
 pneumothorax, arrhythmia, endocarditis
Tunneled Central Venous Lines

- long term use
- surgically placed
- subclavian vein or internal jugular vein into SVC
- Dacron cuff - supports ingrowth of tissue to prevent dislodgement and provides barrier to infection
- single or multiple lumens
Implantable port

- long term vascular access
- totally implantable beneath skin
- infusion of medications, TPN, blood products, and IV fluids
- blood sampling
- dual or single lumen
Implantable port

Non-coring Huber needle

Self-sealing septum
Implantable port
Implantable port
Broviac / Central Line Tip Placement in Neonates - A Survey of Pediatric Surgeons on the Web

![Bar graph showing the distribution of responses for different placements.]

- **SVC**: 2 responses
- **SVC/Atrial**: 6 responses
- **High/Mid Atrial**: 12 responses
- **Low Atrial**: 1 response
- **Other**: 2 responses

Number of Respondants
CVL - complications

- insertion related
 - catheter malposition
 - pneumothorax, hemothorax, chylothorax
 - arterial puncture
 - hematoma
 - pericardial tamponade
 - air embolization
 - AV fistula
 - nerve transection
 - acute vascular occlusion
 - dysrhythmiias
Tunnel infection: erythema and tenderness extending along tunnel
CVL

Pneumothorax

Weighted NG

ETT
CVL in jugular vein

approx. skin puncture
Broviac tip

Chylothorax
CVL - complications

- long term
 - thrombus formation
 - line sepsis
 - broken or sheared-off catheters
 - clotting
 - catheter tip migration
 - tract infection
 - vessel perforation
 - fluid extravasation
 - skin erosion

Immunosuppressed children
Thrombus in subclavian vein with back flow of blood into collaterals
Preferred Vein Selection

- Axillary Vein
- Cephalic Vein
- Accessory Cephalic Vein
- Median Cubital Vein
- Basilic Vein

Diagram indicates superficial vein passing deep.
THE END
Nasoenteric tubes

- Therapeutic
 - Salem sump
 - Levin
 - Replogle

- Feeding
 - Regular
 - Weighted
 - Dobbhoff
 - Rusch
Nasogastric tubes

- Therapeutic (suctioning) - Sump, Levin, Replogle
 - large caliber tubes
 - decompression
 - monitor gastric pH
 - medications or short-term feeding
- Feeding - short term (<30 days)
 - small caliber tubes (weighted or unweighted)
Nasogastric tubes

- Levin tubes
 - 1867 Kussmaul first to use tube for decompression
 - 1921 Levin introduced supple rubber tube of uniform diameter with well-designed suction holes
 - suction
Nasogastric tubes

- **Sump tubes**
 - suction via multiple holes in distal tube
 - gentle suction \(\downarrow\) risk of inducing GI bleed
 - continuous movement of air through vent
 \(\therefore\) prevents plugging of holes by mucosa
 - continuous low-level wall suction allows efficient aspiration and minimizes tissue damage
Nasogastric tubes

- Replogle
 - used in TEF for continuous suctioning
 - multiple holes at very distal end of tube
ETT

UVC

NG

Temperature sensor
Nasoduodenal and nasojejunal tubes

- Tubes placed distal to ligament of Treitz associated with decreased risk of aspiration
- Longer term feeding
- Use of smaller caliber tubes - clogging of tubes
- Can be placed at bedside
 - RLD positioning, unweighted tubes, pro-motility agent, pH monitor
 - Fluoroscopic or endoscopic assistance
Nasoenteric tubes

- Mean tube life span: 10 days
- Clogging: 2-9%
- "Accidental" tube dislodgment: 60% of tube removals
- Feeding intolerance and residual volumes
- Continuous, intermittent, bolus feeds
Tip of NG in esophagus
NG in left hemithorax