Congenital Spine Deformity

Devin Peterson, MD, FRCSC, Dip. Sport Med.
Assistant Professor, Department of Surgery
Faculty of Health Sciences, McMaster University
McMaster Children’s Hospital
McMaster Sports Injury Clinic
Congenital Scoliosis
• 13 year old female
• Spinal curve
• No pain
• No neurological symptoms
• Menses for 1 year
• Healthy
• Spinal asymmetry
• No cutaneous manifestations
• Motor/Sensory examination normal
• Reflexes: Increased left achilles + clonus
Next Steps?
- X-ray
- MRI
 - Neurologic S & S
 - Foot Deformity
 - Pre-operatively
 - Butterfly vertebrae (cleft vertebrae)
 - Increased incidence of diastematomyelia
- Abdominal Ultrasound
- Pediatric Assessment
• Scoliosis due to abnormal vertebral development
• Genetics: most sporadic
• 20 % incidence of spinal dysraphism
 ➢ Tethered spinal cord
 ➢ Diastematomyelia
 ➢ Etc.
• 20 - 33 % incidence urinary tract anomalies
 ➢ Common undifferentiated mesenchyme
 ➢ Many have normal renal function
 • 6% life threatening
• 10 - 15 % CHD
- Classification
 - Segmentation
 - Formation
 - Mixed
Defects of Segmentation

<table>
<thead>
<tr>
<th>Defect</th>
<th>Image Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block Vertebra</td>
<td>Bilateral failure of segmentation</td>
</tr>
<tr>
<td>Unilateral Bar</td>
<td>Unilateral failure of segmentation</td>
</tr>
<tr>
<td>Unilateral bar & Hemivertebra</td>
<td>Unilateral failure of segmentation</td>
</tr>
</tbody>
</table>

Defects of Formation

<table>
<thead>
<tr>
<th>Defect</th>
<th>Image Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemivertebra</td>
<td>Fully segmented</td>
</tr>
<tr>
<td>Semi-segmented</td>
<td>Semi-segmented</td>
</tr>
<tr>
<td>Incarcerated</td>
<td>Incarcerated</td>
</tr>
<tr>
<td>Nonsegmented</td>
<td>Nonsegmented</td>
</tr>
<tr>
<td>Wedge Vertebra</td>
<td>Unilateral partial failure of formation</td>
</tr>
</tbody>
</table>
• Natural History
 ➢ 75 – 90% Progressive

• Poor prognosis:
 ➢ Thoracic curve
 ➢ Unilateral unsegmented bar with ≥ 1 convex hemivertebrae
 ➢ Hemivertebrae at lumbosacral level
• Options?

➤ Orthotic Treatment
 • Poor response
 – Primary defect is in bone not soft tissue
 • Milwaukee brace preferred
 – underarm braces cause thoracic compression and reduce vital capacity?
 • Flexible or secondary curve treatment
 • No role in rigid deformity
• Surgical Treatment
 ➢ Indications:
 • Progressive curves not responding to orthosis
 • Certain anomalies?
 ➢ Early fusion may not stunt growth
• Posterior Fusion:
 ➢ Aim is curve stabilization
 ➢ Correction and immobilization with traction, cast or Milwaukee brace
 ➢ Instrumentation depending on age
• Combined Anterior and Posterior Fusion:
 ➢ Used for curves with poor prognosis
 • Good convex growth potential
 • Young age
 ➢ Pseudoarthrosis rate lower
 ➢ Correction and immobilization with traction, cast, brace, or instrumentation
• Convex Growth Arrest:
 ➢ Achieved by anterior and posterior convex fusion
 • anterior hemiepiphysodesis and posterior hemiarthrodesis
 ➢ Arrest convex growth, allow concave growth
 ➢ Indicated in cases with progresses scoliosis or severe scoliosis on presentation with single or adjacent convex hemivertebrae and chance for concave growth
• Hemivertebrae Excision:
 - Essentially anterior and posterior wedge osteotomy combined with correction and fusion
 - Used for rigid angulated scoliosis not amendable to other treatments
 - Usually lumbosacral due to lack of compensation
Congenital Kyphosis
• Kyphosis due to abnormal vertebral development
• Associated Anomalies:
 ➢ Intraspinal
 ➢ Cardiac and pulmonary
 ➢ Renal
 ➢ Auditory
 ➢ Klippel-Feil Syndrome
• Classification (Winter)
 ➢ Type I: Failure of Formation
 ➢ Type II: Failure of Segmentation
 ➢ Type II: Mixed
<table>
<thead>
<tr>
<th>DEFECTS OF VERTEBRAL-BODY SEGMENTATION</th>
<th>DEFECTS OF VERTEBRAL-BODY FORMATION</th>
<th>MIXED ANOMALIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARTIAL</td>
<td>ANTERIOR AND UNILATERAL APLASIA</td>
<td>ANTEROLATERAL BAR AND CONTRALATERAL QUADRANT VERTEBRA</td>
</tr>
<tr>
<td>ANTERIOR UNSEGMENTED BAR</td>
<td>POSTEROLATERAL QUADRANT VERTEBRA</td>
<td></td>
</tr>
<tr>
<td>COMPLETE</td>
<td>ANTERIOR APLASIA</td>
<td>ANTERIOR HYPOPLASIA</td>
</tr>
<tr>
<td>BLOCK VERTEBRA</td>
<td>POSTERIOR HEMIVERTEBRA</td>
<td>WEDGE VERTEBRA</td>
</tr>
<tr>
<td></td>
<td>BUTTERFLY VERTEBRA</td>
<td></td>
</tr>
</tbody>
</table>

This table illustrates various defects in vertebral body segmentation and formation, along with mixed anomalies.
- Natural History:
 - Type I: 7°/year
 - Increased incidence of neurologic involvement
 - Type II: 5°/year
• Orthotic Treatment
 ➢ Compensatory Curves

• Surgical Treatment
 ➢ Early
 ➢ Late
 ➢ Cord Compression
• Early Treatment of Mild Deformities
 ➢ < 55° and < 5 years = Posterior fusion

• Late Treatment of Moderate to Severe Deformities
 ➢ < 55° = Posterior fusion
 ➢ > 55° = Anterior and Posterior fusion
 • ± strut graft
 • ± instrumentation

• Late Treatment of Severe Deformities with Cord Compression
 ➢ Anterior Decompression
 ➢ Anterior strut graft
 ➢ Posterior fusion ± instrumentation
Ref: Lovell and Winter’s Pediatric Orthopaedics (5th edition)