Predictors for persistent pain after breast cancer surgery:
A systematic review of observational studies

Li Wang & Jason Busse
Michael G. DeGroote Institute for Pain Research & Care
McMaster University
Nov. 8th, 2014
Faculty/Presenter Disclosure

Li Wang

Relationships with commercial interests:*

• **Grants/Research Support:** NONE
• **Speakers Bureau/Honoraria:** NONE
• **Consulting Fees:** NONE
• **Other:** NONE
Systematic Review of Predictors for Persistent Postsurgical Pain

Following all types of surgery

- Breast cancer surgery
- Cardiac surgery
- Thoracotomy
- Amputation
- Hernia repair
- Caesarean section
- Others...

- Persistent postsurgical pain (PPSP): 10–50%
- Predictors of PPSP are poorly understood, which complicates efforts to improve prognosis for patients at risk
Background

Two systematic reviews and 3 narrative reviews published:

Persistent pain after breast cancer surgery:

• Median 31% (IQR: 21.5–47.3%) - 1st SR for persistent pain prevalence only
• Range 25 - 60% - 2nd SR for both prevalence and predictor
• Severe pain: 10% (2nd SR); 10 -15% (from narrative review)

Persistent pain after breast cancer surgery is associated with

• Other symptoms: lymphedema, sensory disturbance, sleep disturbance, upper limb dysfunction...
• Poorer heath-related quality of life
Risk factors/predictors for persistent pain

Preoperative factors:
- Psychosocial factors
- Age
- Obesity
- Ethnicity
- Preop pain (breast or other locations)
- Nociceptive function
- Genetics

Intraoperative factors:
- Mastectomy vs BCS
- ALND vs. SLNB
- ICBN
- Analgesia and preemptive analgesia...

Postoperative factors:
- Adjuvant therapy
- Recurrence
- Acute pain
- Pain treatment
- Sensory disturbances
- Lymphedema
- Complications
- Follow-up
Limitations of existing reviews

Most reviews are narrative summaries
 • Overestimation of predictive power (often only positive results)

The sole systematic review of the predictors:
 • Outdated searching: from 1995 to March 2010
 • Included results without adjustment
 • Did not assess the quality of included studies
 • Did not attempt any statistical pooling of data
 • No overall assessment of predictive power for any predictors
Objectives

To identify the predictors for persistent pain following breast cancer surgery using meta-analysis when possible

Eligibility criteria

P: Patients underwent breast cancer surgery
E: Any predictor with an adjusted analysis
O: Persistent pain - any pain after breast cancer surgery
 • Time frame: >=2 months (IASP criteria for chronic pain)

Design

• Cohort study
• Case-control study
Searching strategies

Databases: From the inception to August 04, 2014

- MEDLINE/PubMed
- EMBASE
- CINAHL
- PsycInfo

No language limitation

Risk of bias assessment

- Representativeness of the study population
- Accuracy of outcome assessment
- Proportion of missing data
- Predictive models appropriately adjusted for
 - age, cancer stage/type of surgery, and adjuvant therapy
Data selection, coding & extraction

10 reviewers screened, independently and in duplicate

Calibration exercises for screening and data extraction

Screening & Data extraction: standardized forms and instruction

Code-book for all predictors

10 reviewers extracted data, and then verified by Li Wang
Data analysis

Meta-analysis:
- Random effects model to pool data for each predictor across studies
- Odds ratios & 95% confidence interval.
- Converting other measures (e.g. RR, HR) to an odds ratio
- Heterogeneity using both a chi-squared test and the \(I^2 \) statistic

Data imputation:
- For predictors tested, not significant, not reported
- Attributing adjusted OR=1 to minimize overestimation
- Variance from “hot deck approach”
Explanations of heterogeneity

Subgroup analyses

1) Different threshold for pain:
 High vs. low threshold

2) Whether adjusted for age, cancer stage/type of surgery, and adjuvant therapy

Meta-regression for interaction

1) Mean age
2) Duration of follow-up
3) Proportion of loss to follow-up
Results

Study selection:

Identification

Records identified through database searching (n = 9,233)
Additional records identified through other sources (n = 0)

Screening

Records after duplicates removed (n = 6,476)

Eligibility

Records screened (n = 6,476)

Full-text articles assessed for eligibility (n = 512)

Included

Studies included (n = 30)

Records excluded (n = 5,964)

Full-text articles excluded, with reasons:
- Excluded: 457
- Unreviewed: 25
Baseline characteristics

Year published
• 1997-1999: 3
• 2000-2009: 7
• 2010-2014: 20

Countries
• Europe: 15
• North America: 11
• Australia: 1
• South America: 2
• Asia: 1

Study design
• All cohort study

• Sample size
 • Median & IQR: 416 (262-611)
 • Range: 113-2750

• Mean age
 • Median & IQR: 57 (54-59)
 • Range: 41-64

• Mean duration of follow-up(months)
 • Median & IQR: 26 (17-42)
 • Range: 3-72.5
Persistent pain prevalence & intensity

Prevalence decreases, but intensity increases over time.
Risk of bias

The representativeness of the study population
- Low risk: 19
 - Random sampling: 1
 - Cancer registry: 2
 - Consecutive sampling: 16
- Not reported: 11

The proportion of lost to follow-up
- Median & IQR: 16.6% (8.2%-30.5%)
- Range: 4.2% – 43.4%
- >20%: 8 studies

The accuracy of outcome assessment
- Low risk: 13
- High risk: 17

Whether or not predictive models are appropriately adjusted
- Low risk: 27
- High risk: 3
Predictor: Age

21 studies, 10,240 patients

Older women less likely to develop persistent pain

Adjusted OR & 95%CI: 0.77 (0.68 to 0.87)
Predictor: Age – subgroup analyses

Low vs. high threshold

Appropriately adjusted vs. not

interaction p = 0.22

<table>
<thead>
<tr>
<th>Refid</th>
<th>Sample size</th>
<th>ES (95% CI)</th>
<th>% Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interaction p = 0.23

<table>
<thead>
<tr>
<th>Refid</th>
<th>Sample size</th>
<th>ES (95% CI)</th>
<th>% Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Weights are from random effects analysis
Predictor: Axillary procedure

Studies, 6,839 patients

Axillary clearance more likely to result in PPSP

Adjusted OR & 95% CI: 2.4 (1.6 to 3.5)

None of hypotheses factors explained heterogeneity

<table>
<thead>
<tr>
<th>refid</th>
<th>axilla analysis</th>
<th>sample</th>
<th>Adjusted OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>ALND vs SLNB</td>
<td>174</td>
<td>1.00 (0.33, 3.00)</td>
</tr>
<tr>
<td>80</td>
<td>ALND vs SLNB</td>
<td>1631</td>
<td>1.46 (1.08, 1.97)</td>
</tr>
<tr>
<td>186</td>
<td>ALND vs no</td>
<td>532</td>
<td>1.00 (0.52, 1.93)</td>
</tr>
<tr>
<td>364</td>
<td>ALND vs SLNB</td>
<td>235</td>
<td>2.97 (1.09, 8.01)</td>
</tr>
<tr>
<td>662</td>
<td>ALND vs no</td>
<td>300</td>
<td>7.70 (4.30, 13.8)</td>
</tr>
<tr>
<td>1305</td>
<td>ALND vs no</td>
<td>370</td>
<td>6.30 (3.30, 12.0)</td>
</tr>
<tr>
<td>1930</td>
<td>ALND vs SLNB</td>
<td>2406</td>
<td>2.04 (1.60, 2.60)</td>
</tr>
<tr>
<td>2736</td>
<td>ALND vs no</td>
<td>103</td>
<td>3.83 (1.72, 8.50)</td>
</tr>
<tr>
<td>2778</td>
<td>ALND vs SLNB</td>
<td>247</td>
<td>4.85 (1.78, 13.2)</td>
</tr>
<tr>
<td>3104</td>
<td>ALND vs SLNB</td>
<td>470</td>
<td>1.32 (0.64, 2.81)</td>
</tr>
<tr>
<td>3150</td>
<td>ALND vs no</td>
<td>183</td>
<td>1.16 (0.38, 3.54)</td>
</tr>
<tr>
<td>3727</td>
<td>ALND vs no</td>
<td>188</td>
<td>2.49 (1.12, 5.51)</td>
</tr>
<tr>
<td></td>
<td>Overall (I-squared = 78.3%, p = 0.000)</td>
<td></td>
<td>2.40 (1.64, 3.49)</td>
</tr>
</tbody>
</table>

NOTE: Weights are from random effects analysis
Radiotherapy is associated with PPSP

Adjusted OR & 95%CI: 1.34 (1.11 to 1.61)

None of hypotheses factors explained heterogeneity
Predictor: Acute postop pain
- 6 studies, 1,608 patients
- Acute post-op pain is associated with PPSP

Adjusted OR & 95%CI:
1.18 (1.07 to 1.30)

*Converting to same scale NRS 0-10

NOTE: Weights are from random effects analysis
Other predictors:

<table>
<thead>
<tr>
<th></th>
<th>No. of studies</th>
<th>No. of patients</th>
<th>Adjusted OR & 95%CI</th>
<th>Heterogeneity p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast surgery (MRM vs. BCS)</td>
<td>16</td>
<td>7,805</td>
<td>0.92 (0.75 to 1.13)</td>
<td>0.16</td>
</tr>
<tr>
<td>Chemotherapy (yes vs no)</td>
<td>17</td>
<td>7,813</td>
<td>1.07 (0.93 to 1.24)</td>
<td>0.97</td>
</tr>
<tr>
<td>Endocrine therapy (yes vs no)</td>
<td>12</td>
<td>8,162</td>
<td>1.03 (0.89 to 1.18)</td>
<td>1</td>
</tr>
<tr>
<td>Preoperative pain (yes vs no)</td>
<td>7</td>
<td>2,011</td>
<td>1.41 (0.95 to 2.09)</td>
<td>0.24</td>
</tr>
</tbody>
</table>

50+ predictors reported, not able to be pooled
Summary

Younger age, axillary procedures, radiotherapy and acute post-op pain are associated with persistent pain after breast cancer surgery.

Large unexplained heterogeneity:
- particularly age, axillary procedures

Future studies for intervention:
- explore the effect of
 - targeting post-operative pain
 - nerve sparing techniques for axillary procedures
Suggestions for future research

Definition of persistent pain after breast cancer surgery/PMPS

Validated instrument of pain intensity/severity

Adequate sample size for pre-specified important risk factors
 - Ten patients with/without event (pain/no pain) for each predictor

Appropriate data analysis

Following observational study reporting guideline – e.g. STROBE

Complete reporting of data
Acknowledgement

Team:

Alka Kaushal
Beatriz Romerosa
Carlos Almeida
Gordon Guyatt
James Khan
Jason Busse
Henry Kwon
Michael McGillion

Contributors to non-English articles:

Beatriz Romerosa
Behnam Sadeghi
Carlos Almeida
Dmitry Shiktorov
Elisabetta Trinari
Inge Reininga
Kari Tikkinen
Karin Kirmayr

Klaus Witt
Nigar Sekercioglu
Premysl Bercik
Samantha Craigie
Sandra Brouwer
Sun Makosso
Toshi Furukawa
Wiktoria Lesniak