Pheochromocytoma – pitfalls in diagnosis

Jacques W.M. Lenders, MD, PhD, FRCP

DEPT. OF INTERNAL MEDICINE, RADBOUD UNIVERSITY MEDICAL CENTER, NIJMEGEN, THE NETHERLANDS

DEPT. OF INTERNAL MEDICINE III, UNIVERSITY HOSPITAL CARL GUSTAV CARUS, DRESDEN, GERMANY
Faculty/Presenter Disclosure

- **Faculty:** Jacques Lenders

- **Relationships with commercial interests:**
 - Grants/Research Support: None
 - Speakers Bureau/Honoraria: None
 - Consulting Fees: None
 - Other: None
Pitfalls in diagnosis to be addressed:

• Medical history and physical examination

• Biochemical testing: exclusion / confirmation of excess catecholamine secretion

• Tumor location: anatomical and functional imaging
• Pheochromocytoma is still missed: 0.05 % in autopsy studies!
• Diagnostic delay for pheochromocytoma is ± 3 years!
• Timely and proper treatment: possible complete cure

therefore

Early consideration of tumor is key!!
SURGICAL REMOVAL OF TUMOR

MEDICAL HISTORY + PHYSICAL EXAMINATION

Clinical Clues!!

CONSIDER IT

DIAGNOSE and FIND IT

SURGICAL REMOVAL OF TUMOR

Hamilton 2014
Signs and symptoms

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>headache</td>
<td>70-90%</td>
</tr>
<tr>
<td>palpitations</td>
<td>50-70%</td>
</tr>
<tr>
<td>Paroxysms</td>
<td>!</td>
</tr>
<tr>
<td>usually < 30 minutes</td>
<td></td>
</tr>
<tr>
<td>spontaneous or elicited</td>
<td></td>
</tr>
<tr>
<td>paroxysmal</td>
<td>50%</td>
</tr>
<tr>
<td>orthostatic hypotension</td>
<td>10-45%</td>
</tr>
<tr>
<td>hyperglycemia</td>
<td>40%</td>
</tr>
</tbody>
</table>

Paroxysms:

- Usually < 30 minutes
- Spontaneous or elicited

Headache: 70-90%

Palpitations: 50-70%

Paroxysms: 50%
Spells /paroxysms may:

• occur spontaneously and/or
• be elicited by many factors like:
 • drugs* (e.g. dopamine receptor antagonists, corticosteroids, histamine)
 • anesthesia (drugs, intubation)
 • micturition
 • mechanical factors
 • foods

*Eisenhofer et al. Drug Safety 2007;30:1031
Pheochromocytoma

Production catecholamines

symptoms

Asymptomatic

Catastrophe
Impact of prevalence (pre-test probability) on predictive value of test

<table>
<thead>
<tr>
<th>Prevalence (pre-test probability)</th>
<th>Neg pred. value</th>
<th>Pos pred. value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 %</td>
<td>99.9 %</td>
<td>6 %</td>
</tr>
<tr>
<td>30 %</td>
<td>99 %</td>
<td>74 %</td>
</tr>
<tr>
<td>80 %</td>
<td>91 %</td>
<td>96 %</td>
</tr>
</tbody>
</table>

- **Sens**: Sensitivity (98%)
- **Spec**: Specificity (85%)
- **Neg pred. value**: Negative Predictive Value
- **Pos pred. value**: Positive Predictive Value

Hamilton 2014
Differential diagnosis

<table>
<thead>
<tr>
<th>Category</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endocrine</td>
<td>hyperthyreoidism / med. thyr. carc carcinoid</td>
</tr>
<tr>
<td></td>
<td>hypoglycemia</td>
</tr>
<tr>
<td></td>
<td>menopausal</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>heart failure / arrhythmias</td>
</tr>
<tr>
<td></td>
<td>ischemic heart disease</td>
</tr>
<tr>
<td></td>
<td>POTS</td>
</tr>
<tr>
<td>Neurologic</td>
<td>baroreflex failure</td>
</tr>
<tr>
<td></td>
<td>migraine</td>
</tr>
<tr>
<td></td>
<td>dienceph. autonomic epilepsia</td>
</tr>
<tr>
<td></td>
<td>meningioma</td>
</tr>
<tr>
<td></td>
<td>Guillain-Barre syndrome</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>acute intermittent porphyria</td>
</tr>
<tr>
<td></td>
<td>panic disorder</td>
</tr>
<tr>
<td></td>
<td>mastocytosis</td>
</tr>
<tr>
<td></td>
<td>withdrawal alcohol / clonidine medication (factitious)</td>
</tr>
</tbody>
</table>
DIAGNOSTIC WORK-UP

First: biochemical testing

Demonstration of *excess* production of catecholamines or its metabolites in *plasma* or *urine*

Second: imaging
Catecholamines: **episodic** secretion

Metanephrines: **continuous** secretion
Which compound for initial testing in 2014?

Metanephrines: highest diagnostic accuracy

- **Plasma**
 - Sens: 95-99%
 - Spec: 89-98%

- **24 hour urine**
 - Sens: 95-97%
 - Spec: 86-95%

Assays

- HLPC-ECD or LC-MS/MS
- Immuno-assays not sufficiently validated!
Norepinephrine
Normetanephrine

Epinephrine
Metanephrine

URL Norepi
URL NMN

URL Epi
URL MN
Causes of a false-negative test result

- oxidative degradation because tubes not on ice (cats > mets)
- sampling 24-hours urine may be incomplete
- catecholamine secretion is episodic
- small tumors may be ‘silent’
Causes of a false-positive test result

- sampling conditions: after supine rest vs sitting without preceding rest

- elevations in catecholamines / metabolites are not specific for pheochromocytoma
 - increased sympathetic activity: e.g. heart failure, hypoglycemia etc
 - effects of diet constituents (methoxytyramine)
 - effects of renal function impairment (metanephrines 2-3 fold increased)
 - interfering effects of drug treatment
Sampling conditions for metanephrines

BLOOD
- preferably after 30 minutes of supine rest
- after fasting state (only for methoxytyramine)
- collect in heparinized tubes on ice

URINE (24-hours)
- in container without additives or evt sodiumbisulphite
- acidify urine in lab to pH 4 before storing
- also measure creatinine excretion
Normetanephrine: influence of posture

Plasma Normetanephrine (pmol/L)

Seated - rest

Supine + rest

p<0.001

<table>
<thead>
<tr>
<th></th>
<th>Plasma</th>
<th></th>
<th>Urine</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NMN</td>
<td>MN</td>
<td>NMN</td>
<td>MN</td>
</tr>
<tr>
<td>Acetaminophen*</td>
<td>++</td>
<td>-</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>Labetalol*</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Sotalol*</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>α-methyldopa*</td>
<td>++</td>
<td>-</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>Tricyclic antidepressants†</td>
<td>++</td>
<td>-</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>Buspirone*</td>
<td>-</td>
<td>++</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>Phenoxybenzamine†</td>
<td>++</td>
<td>-</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>MAO-inhibitors†</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Sympathomimetics†</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cocaine†</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Sulphasalazine*</td>
<td>++</td>
<td>-</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>Levodopa‡</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
</tbody>
</table>

* Analytical interference with HPLC-ECD
† Pharmacodynamic interference
Excluded additional testing needed

Plasma level (nmol/L)

- Normetanephrine: Pheo 2.20, Excluded 0.61
- Metanephrine: Pheo 1.20, Excluded 0.31
Follow-up testing in case of slightly increased test results

- In about 20% of tested patients: false-positive test results (Yu et al. 2009)
- Only 28% of false-positive test results adequate follow-up (Anas et al. 2010)

So what to do as necessary follow-up?

• Try to stop interfering drug treatment
• Repeat testing (plasma metanephrines: after supine rest)
• Clonidine suppression test using plasma normetanephrine

Eisenhofer et al. J Clin Endocrinol Metab 2003;88:2656

Hamilton 2014
Anatomical imaging

sensitivity: 88-100%

specificity: 75-80%

1. CT scan

2. MRI
 - pregnancy / allergy
 - metastatic / HNPGL
 - germline mutations
Differential diagnosis adrenal mass

- incidentaloma (± 4% increases with age to 10%)
- benign adenoma (± SCS)
- pheochromocytoma
- adrenal cortical carcinoma (ACC)
- angiomyolipoma
- ganglioneuroma
- myelolipoma
- hemangioma
- granuloma
- metastasis
<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>CT Size</th>
<th>CT Homogeneous</th>
<th>CT Margins</th>
<th>CT Density</th>
<th>CT Abs. Washout</th>
<th>MRI T2-Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pheo</td>
<td>variable</td>
<td>variable</td>
<td>variable</td>
<td>most >10 HU</td>
<td><60%</td>
<td>hyperintense</td>
</tr>
<tr>
<td>Adenoma</td>
<td>most < 3 cm</td>
<td>+</td>
<td>smooth</td>
<td>70% has HU < 10</td>
<td>>60%</td>
<td>iso-intense</td>
</tr>
<tr>
<td>ACC</td>
<td>most > 4 cm</td>
<td>-</td>
<td>irregular</td>
<td>most >10 HU</td>
<td><60%</td>
<td>hyperintense</td>
</tr>
<tr>
<td>Metastasis</td>
<td>variable</td>
<td>-</td>
<td>irregular</td>
<td>most >10 HU</td>
<td><60%</td>
<td>iso-hyper-intense</td>
</tr>
</tbody>
</table>
29% behaves as adenoma
Functional imaging ligands

- **68Ga-DOTA peptides**
- **111In-DTPA-pentetreotide**
- **18F-FDA**
- **123/131I-MIBG**

SSTR

Internalization in endosomes

- **18F-FDG-6P**
- **18F-FDG**

VMAT

Noradrenaline

DBH

Dopamine

LAT

18F-FDOPA

GLUT

Dopa

68Ga-DOTA peptides

111In-DTPA-pentetreotide

18F-FDA

123/131I-MIBG

SSTR

Internalization in endosomes

VMAT

Noradrenaline

DBH

Dopamine

LAT

18F-FDOPA

GLUT

Dopa
Purpose to determine:

1. multifocal / metastatic disease
2. determine potential treatment with ^{131}I-MIBG

Diagnostic accuracy depends on:

1. germline mutation status
2. adrenal / extra-adrenal / metastatic
False-positive MIBG uptake due to:

1. Normal physiological uptake in adrenals (in 50-80%)
2. Hyperplasia after unilateral adrenalectomy
3. Other neuroendocrine lesions

False-negative MIBG uptake due to:

1. Small size
2. Necrosis
3. Dedifferentiation: loss of expression of transporters
4. Lack of VMAT transporters (HNPGLs)
5. Drugs that interfere with MIBG uptake
Examples of drugs that may impair 123I-MIBG uptake

<table>
<thead>
<tr>
<th>Drug class</th>
<th>Drug examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenergic neurons blockers</td>
<td>Reserpine, labetalol</td>
</tr>
<tr>
<td>Sympathomimetic drugs</td>
<td>Ephedrine, norepinephrine, metaraminol</td>
</tr>
<tr>
<td>β_2 stimulants (sympathomimetics)</td>
<td>Salbutamol, terbutaline, eformoterol</td>
</tr>
<tr>
<td>Calcium channel blockers</td>
<td>Amlodipine, diltiazem, nifedipine, verapamil</td>
</tr>
<tr>
<td>Tricyclic antidepressants</td>
<td>Amitriptyline, nortriptyline, imipramine</td>
</tr>
<tr>
<td>Antipsychotics</td>
<td>Haloperidol, clozapine, risperidone, sulpiride,</td>
</tr>
<tr>
<td>CNS Stimulants</td>
<td>Amphetamines, methylphenidate, caffeine</td>
</tr>
<tr>
<td>α-adrenoceptor blockers</td>
<td>Phenoxybenzamine (intravenous doses)</td>
</tr>
<tr>
<td>only Opioid analgesics</td>
<td>Tramadol</td>
</tr>
</tbody>
</table>

Drugs interfering with MIBG-uptake Solanki et al. Nucl Med Commun 1992;13:513
SDHB-related metastatic PPGL

MEN2-related metastatic PPGL

18F-FDOPA 18F-FDG

18F-FDOPA 18F-FDG

Timmers et al. JCEM 2009;94:4757
Key home messages

- Consider pheochromocytoma in each patient with paroxysms
- First biochemical testing, then imaging
- Initial test: plasma or urinary metanephrines
- Blood sampling: preferably after fasting / >20 min. supine rest
- Don’t forget follow-up in patients with positive test result
- Check interfering medication when ordering 123I-MIBG scan
- Results of functional imaging depend on the genetic background
International collaboration

Graeme Eisenhofer
University Hospital Carl Gustav Carus, Dresden, Germany

Massimo Mannelli
University of Florence, Florence, Italy

Henri Timmers
Jacques WM Lenders
Radboud University Medical Center, Nijmegen, The Netherlands

Karel Pacak
NICHD, NIH, Bethesda, USA

Andrzej Januszewicz
Aleksander Prejbusz
Institute of Cardiology, Warsaw, Poland
Pheochromocytoma/Paraganglioma
Clinical Practice Guideline Task Force

Chairman: Jacques W.M. Lenders, Nijmegen, The Netherlands

Members:
• Quan-Yang Duh, San Francisco, USA
• Graeme Eisenhofer, Dresden, Germany
• Anne-Paule Gimenez-Roqueplo, Paris, France
• Mitsuhide Naruse, Kyoto, Japan
• Karel Pacak, NIH, Bethesda, USA
• William Young Jr, Mayo Clinic, USA

To be presented at ENDO2014 in Chicago