
P1: GVM/GCY/GCZ P2: FJY/GCZ QC:

Nonlinear Dynamics, Psychology, and Life Sciences [ndpl] ph090-ndpl-365858 November 19, 2001 12:25 Style file version Oct 23, 2000

FOR
PROOFREADIN

G
ONLY

Nonlinear Dynamics, Psychology, and Life Sciences, Vol. 6, No. 4, October 2002 ( C© 2002)

Self-Organization and Resource Exchange
in EVS Modeling

Irina Trofimova1,3 and Nicolay Mitin2

Two versions of a model, named Resource, were developed within the Ensem-
bles with Variable Structure (EVS) approach. The EVS-approach represents
interacting groups (populations) with a flexible structure of connections and
a diversity of elements (agents), where agents possess an abstract set of char-
acteristics, and seek to form connections with other agents according to the
degree of compatibility between these characteristics. The model presented
here studied a role of parameters related to a flow of resource through the
agents of a population. Individual sociability appeared to be a key parameter
in the self-organization of the population. The percentage of an individual re-
source that an agent is allowed to spend was also an important resource-related
parameter. Some other phenomena are reported as well.
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INTRODUCTION

Self-organization in nature can be represented as a process of grouping
of many elements into a system, i.e. big clusters of interconnected and in-
teracting elements. There are qualitative and quantitative factors of such a
clusterization. Our modeling of Ensembles with Variable Structures (EVS)
is devoted to the study of the role of factors, such as size, diversity and so-
ciability of a population, on the clustering behavior and group dynamics
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in a population of agents (Trofimova, Mitin, Potapov, & Malinetzky, 1997;
Trofimova, 2000a, Trofimova, 2000b). The EVS-approach represents popu-
lations of interacting agents with a flexible structure of connections and a
diversity of them, where agents possess an abstract set of characteristics, and
seek to form connections with other agents according to the degree of com-
patibility between these characteristics. EVS models also use the sociability
parameter, which is the maximum number of connections that an agent can
establish or hold.

Our models are based on a spin glass algorithm, extended to a higher
diversity of agents and to the use of resource related characteristics. In the
majority of EVS models each agent receives some resource and spends some
resource at each time step. We consider the concept of resource broadly: it
could refer to energy, matter, chemical elements, time, information, money,
service, emotional exchange, and so on. EVS uses this concept in order to
simulate a principle of openness of natural systems and the dissipation of
energy or other resources.

Thus, briefly the main properties of EVS models are: (a) There is simi-
larity with cellular automata, as the characteristics of each element are dis-
crete numbers, and evolution occurs in discrete time. (b) There is nonlocality
of connections between agents. (c) Population has a diversity of elements,
defined via some parameters or vectors. (d) Agents randomly check other
agents in the matter of compatibility. (e) The number of connections to
be checked/established is limited by the parameter of sociability. (f) The
structure of connections between elements is very dynamic and stochastic.
(g) “Mutual agreement” principle: connections between agents appear only
when both agents “agree” to establish it, and if one agent wants to terminate
it, the connection breaks. (h) Each agent receives and spends some resource
at each time step, allowing the simulation of resource flow through the agent
and through the system.

Each connection carries with it a relative valuation on the part of the
agent forming it, and the agents attempt to optimize their valuations over
time. We considered the situation in which the distribution of connections is
uniform throughout the population: every element can potentially establish
contact with every other agent with equal probability, and hold this contact
if it is profitable. All of these properties together distinguish the EVS ap-
proach from such multi-agents models like random graphs (Palmer, 1985),
percolation models (Grimmett, 1989), cellular automata (Burks, 1970), ran-
dom boolean networks (the best review is Arbib, 1995) self-organized criti-
cality (Bak, Tang, & Wiesenfeld, 1987) or the Kauffman model (Kauffman,
1993).

Analysis of clustering and affiliation behavior has been carried out for
the Compatibility model (Trofimova & Potapov, 1998; Trofimova, Potapov, &
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Sulis, 1998). In this model, individual agents attempted to minimize the costs
associated with the establishment of cooperative (but very dynamic) links
with neighboring agents. A phase transition was observed as a function of
sociability with the critical point Sc = P0,6, where P is the population size.
Below Sc, the population organized into a large number of small, connected
clusters. Above Sc, the population organized mostly into a single large clus-
ter. A critical role of sociability appeared in other phenomena and other
models of EVS.

Continuous phase transitions have been extensively studied and two
well known models, percolation models (Grimmett, 1989), and random
graph models (Palmer, 1985) bear a striking similarity to the Compatibil-
ity model. In all of these models, connections are established between a
collection of vertices. The difference between the models lies mostly in the
fact that in percolation and random graph models, the connections, once
established, are fixed, as are the vertices. Thus the percolation and random
graph models simulate equilibrium conditions. In contrast, connections in
the Compatibility model are highly dynamic with large fluctuations occur-
ring for all values of the sociability. There is also some similarity between ef-
fects of Compatibility model and self-organized criticality (Bak et al., 1987),
as well as Kauffman’s model (Kauffman, 1993). A difference between our
model and former models is that they considered a population of identical
elements or a very low diversity of elements. In addition to that, EVS models
deal with the flow and exchange of resources between elements during their
connections, while other models do not.

Thus sociability, (the limit on the number of connections that an agent
can hold or check) appeared to be a key parameter governing some quan-
titative features of self-organization of a system, and our interest was to
study the impact of two different kinds of sociability applied in a resource-
exchange model: 1) when sociability of each agent is ordered as individual
characteristics, and 2) when there is an overall limit of allowed connections
for a system.

The Compatibility model demonstrated that after the phase transition
a majority of agents affiliate in large clusters, but there is always a very small
number of agents which do not belong to this majority, and constitute their
own small clusters (Fig. 1). As all agents in the Compatibility model had fixed
individual vectors in a vector space of characteristics, one might think that
this diversity of agents prevented them from affiliation into the clusters of
the “majority.” In our opinion diversity is not the only factor that leads to the
existence of “odd” small clusters, as connections in the Compatibility model
were highly dynamic and had large fluctuations, so each given agent actually
did affiliate in large clusters in some moments and happened to affiliate in
small clusters in other moments of time. To clear this matter we decided
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Fig. 1. Cluster distribution functions for popula-
tion 400 and sociability above Sc. The x-axis repre-
sents size of clusters, the y-axis represents number
of such clusters normalized against the mode.

to use the “Adaptation” version of our “Resource” model and to allow an
agent to change its configuration (individual characteristics) in order to be
similar with agents to which it is connected.

The third goal of our study was associated with the proposition that indi-
vidual differences on the limit on the input and output of resource during the
resource exchange between agents might play a role in the self-organization
of a system. Our first Functional Differentiation model (FD-1) showed a
phenomenon, which is intuitively well-known: under the condition of vari-
able structure of connections and exchange of a resource an amount of
resource received from the other agents is approximately the same for vari-
ous agents, but the strategy of spending a resource plays the biggest role in
functional differentiation (Trofimova, 1999). The majority of elements of a
natural population is usually exposed to incoming resources and possibilities
more or less equally, and the differences between these elements lies mainly
in operating with these resources and possibilities. If agents usually receive
a resource with the same probability, but spend it with various strategies and
distribution, it is important to know what “spending” parameter to use in
modeling.

Thus the goals of the “Resource” model were: (a) to study the impact of
two different kind of sociability, applied in a resource-exchange model; (b) to
study the impact of an adaptation algorithm, when an agent can change its
characteristics; (c) to study a role of various resource “spending” parameters
and self-organizational dynamics of the models.
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“Resource” Models

In the two versions of the “Resource” model presented here
(Resource-1, named previously “Adaptation” and Resource-2) the agents
were also given a set of differences a priori, expressed as a vector of traits.
The differences of this model from other EVS models are:

1. Individual differences of agents were not abstract traits, but three
characteristics of output resource. (a) fixed necessary expenses per
step (life expenses), which an agent cannot avoid; (b) maximum num-
ber of expenses per step (including the cost to have a connection);
(c) maximal allowed percentage of expenses derived from the resid-
ual of an agent.

2. Agents could change their characteristics in order to get more profit,
based on similarities with other agents (adaptive algorithm), so it
could become closer to the “average individuality.”

Each agent attempted to minimize its costs depending upon the de-
gree of similarity in type between itself and those agents with whom it had
forged links. The initial distribution of values by traits was random as was
the formation of links.

Population sizes were 100, 200, 300, 400. All runs took 5000 steps (for
smaller populations). In order to achieve the indicated properties, a Monte-
Carlo method was used to search for connections and for the spin glass
simulation.

Transition rules from state to state included the establishment of con-
nections between agents with maximal compatibility (Euclidean distance in
a space of parameters, normalized in such a way that the maximum possible
distance equals 1). An agent received an award depending upon the similar-
ity of connections. Thus at each step an element had its current amount of
resource Xi and:

1. Incoming resource: (a) some randomly distributed resource between
the values of −5 and +15, integer numbers (bi ); (b) an award for
similarity with an agent in an established connection as a coeffi-
cient (2 · (1− ri j )): the more close in configuration the agents are,
the larger is this coefficient.

2. Outgoing resource: (a) individually determined, fixed necessary ex-
penses per step (life expenses), which an agent can not avoid (ni );
(b) individually determined maximum of expenses per step (includ-
ing the cost to have a connection), having values between 10 and
40 (Zi ); (c) individually determined maximal allowed percentage
of expenses derived from the residual of an agent, ranging in value
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between 5% and 95%, in 5% increments (Pi ); (d) expenses, asso-
ciated with the mismatch between connected agents Di = min(Pi ∗
(Xi (t)− ni ), Zi ).

Evolution was ordered by following formula:

Xi (t + 1) = Xi (t)− ni − Di + bi +
∑
j∈Ji

2 ∗ (1− ri j ) ∗ Dj/kj ,

where ki – amount of connections of i-th agent; Ji – a set of current connec-
tions of i-th agent, where ki – is a power of set Ji .

The goal of every agent was to maximize the last term in this equation,
i.e. the flow of resource through itself, using (a) the structure of connec-
tions, and (b) a change of internal values along three spending parame-
ters ni , Zi , Pi . A search for connections followed a probabilistic Monte-
Carlo algorithm. The initial distribution of values by traits was random as
was the formation of links. All values of the parameters were relative: max-
imal possible values were normalized by 100.

Thus, the system was allowed to evolve to a stationary state, as every
agent could change its configuration in order to be similar with the other
agents.

The Resource-2 model extends the Resource-1 (“Adaptation”) model,
as it also examines the situation in which the agent receives a resource de-
pending on its similarity to those with whom connections are established.
It also compared the “similarity” criterion of optimization with the other,
more “economical” criterion, when an agent does not receive special profit
for a similarity, and should just store as much resource as possible. Thus
this model examined two different strategies of agents to choose the con-
nections at each step (criterion of optimization): (a) to give preference
to connections with agents located closer in the space of the “spending”
characteristics (similarity strategy, like before); or (b) to give preference
to connections that provide greater quantities of a resource then other
possibilities (profit strategy; such strategies are popular in the economical
models).

In addition the Resource-2 model considered two type of limitation on
the number of connections: (a) Individual sociability of each agent, which
is the maximum number of connections that an agent can establish with
other agents (as in the Compatibility model). (b) Overall limit of allowed
connections, i.e. the maximal number of connections in the system. In this
case we do not order the personal sociability of agents as before (so agents
could establish as many contacts as they want), but the total number of
connections in the system is limited and cannot be changed (like in neural
network models).
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RESULTS AND DISCUSSION

Limits of Similarity

The Resource-1 (Adaptation) model allowed agents to change their
“individuality” towards similarity with other contacting agents: agents re-
ceived more resource for this similarity, paying only a little charge for the
self modification. The system was allowed to evolve to stationarity, as every
agent could change its behavior. Figure 2 shows a simple graphical example
of the evolution of such a system, which is similar to the same situation in
Fig. 1. The difference here is that for behavior that was closer to the others,
an agent received additional resource, and this, to our mind should lead to
complete conformity for all populations.

It was conjectured that the system should evolve towards a fixed point
attractor, i.e. homogeneity of the population, in which all agents have min-
imized their costs to the same degree. Surprisingly, it appeared that small
regions or cluster of cells would persist in which these attributes would con-
tinue to fluctuate in a chaotic or possibly periodic manner. In other words,
the system was frustrated, indicating symmetry breaking. Thus, even for
such a simple model, individual differences persist in the face of similarity

Fig. 2. An example of evolution of a population of 100 agents. A gray-color scale above shows
the degree of “similarity” of agents in existing connections. The lighter the color the more
similar an agent is to its “partners.”
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among the majority of the population, even with a profitable “adaptation”
algorithm.

This raises a deep question as to whether individual differences are a
dynamical necessity. The presence of “outsiders” is probably important in
the self-organization of a system into a large cluster of diverse and interact-
ing elements. “Personality,” or individual particularities of these outsiders
does not matter, as the content of clusters fluctuates, and from time to time
each agent of a population appears to be outside of the majority. The ex-
istence of small clusters outside of an interconnected majority is probably
necessary for the dynamics of a system, giving to this dynamic the freedom
to change the structure of connections and still hold majority of elements
connected.

This phenomenon might find an analogy in group psychology and so-
ciometrics: in any group, at any moment, we could find the person who has
the lowest rank in a group according to some criteria, but this person will
not receive this lowest rank during the next measurement. Also we could
always find moments when an opinion or behavior of a certain member of
a group, even if he was the most popular before, moves him temporarily to
an “outsider” position. A diversity of “configurations” of interacting agents
gives to a system the necessary flexibility of structure and organization, so,
it seems that no system wants to loose this diversity.

Comparison of two Types of Sociability

A study of two types of sociability, individual sociability and a global
limit of connections in a system, demonstrated that individual sociability is
still a key parameter in the appearance of big clusters. The histograms in
Fig. 3c show the cluster sizes in a population (a number of agents having 0,
1, . . . , 10, and more than 10 connections). In both cases, when the maximum
number of allowed connections had limits individually for each agent, agents
managed to create big clusters, unifying the majority of them.

The other type of sociability—the overall number of connections can be
interpreted as reflecting the technological possibilities of cooperation and
communication in a system. For analogy we can imagine a set of service
stations that can effectively serve an average number of clients per day, but,
if by some reason all clients decide to come in one day, they should stay
in line, waiting and competing for service. The other example of a overall
limit can be the situation of a high price on connections or interactions, so
that only a certain number of agents can afford it in one step of time, as the
resources for paying this price are limited in a system. Our results showed
that if the total number of connections over a system is limited but sufficient
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to integrate the system, it nevertheless does not integrate, even maximizing
individual profit to form connections.

It seems that the emergence of a system does not like the competition
between the agents for the connections in every interaction. The speed of
adaptation of elements to each other (their unification) is slower in the case
in which there is a limit on the total number of connections. A population
with such a limitation tends to lose its total resource and does not form groups
of connected elements. With such limits agents cannot come to consensus
and affiliate with other agents effectively.

Figure 3 shows also the average distance between agents as time pro-
gresses (3a) and the average resource of an agent as time progresses (3b).
The profit-orientation algorithm helped an agent to save its resources, while
similarity with other agents did not, even when it was effected through an

Fig. 3. Effects of Resource model: (a) average distance between agents with evolution,
(b) average resource of an agent with evolution, (c) cluster sizes.
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award for a similarity. However the profit-orientation was not much help
in the integration of agents into a big cluster, when the overall number of
connections was limited. The last picture in Fig. 3c shows a diversity of small
clusters, which finds analogy in American economics during the 19th century.
In the condition of low technology of communications and interactions even
a “free market” does not lead to an integrated system, however such a system
emerges as soon as technology or social conditions give a freedom of inter-
action to agents, even without a profit-oriented strategy. No wonder that
such an integrated system appeared in totalitarian regimes without a free
market economy. One can expect totalitarian tendencies in multi-national
economics as well.

Expense Parameters

We analyzed the process of self-organization in some modeled systems
through an examination of the structure of connections, taking a space of
three spending characteristics. This space is a unit cube, and each agent is
represented as a point in this cube (3-dimensional space of characteristics).
Each connection between two agents could be presented as a line between
two corresponding points. Figure 4 shows a plane of parameters Z and P
of a cube having a structure of connections for cases of both type of so-
ciability. One can see how individual sociability creates a more integrated
and rich structure of connections than an overall limit of connections on a
system.

In the case of limits on the overall number of connections in a system one
of three “spending” parameter plays the major role in the self-organization
of the population. This parameter is the maximal allowed percentage taken
from existing resources, which an agent could then distribute through its
connections.

The dominance of this “relative” parameter over direct “expense” pa-
rameters might again remind us about the ensemble nature of the scales
that we use in measurement and the interconnectedness of the properties of
multi-agent systems, especially based on exchange of a resource.

CONCLUSIONS

We found that several parameters of the systems under study played a
significant role in their dynamics and self-organization:

1. Individual Sociability: determines the self-organization of a system
into a big cluster(s) of interconnected agents.
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Fig. 4. Evolution of structure of connections between agents presented for two cases: indi-
vidual differences in sociability (A) and overall limit of connections in a population (B). The
figure shows the coordinates of agents (vertices of graphs), connected by lines in the plane of
parameters Z and P.

2. Profit-orientation: saves resources of an agent, but does not help in
self-organization of a system.

3. Maximal allowed percentage taken from existing resources, which an
agent could distribute by connections: in the case of limits on the
overall number of connections in a system it plays the major role in
the self-organization of the population.

4. In a system with flexible connections between elements, individual
differences persist in the face of similarity among the majority of the
population, even with a profitable “adaptation” algorithm.
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